
Object Relational

Paolo Cappellari

History of DB Models
1950 File Systems, Punched Cards

1960 Hierarchical
(IMS IBM Mainframes)

1970 Network
(CODASYL, IDMS)

1980 Relational
(ORACLE, DB2, Sybase)

1990 Object-Oriented, Object-Relational
(O2, ORACLE9i)

Relational Model

Emergence of data model
Data independence
High-level approach
Standardization

Built-in data types
Little abstraction
Separation between data and operations

Object-Oriented Model

Complex application datatypes
Object Abstraction
Encapsulation of behavior
High performance for specific application

No backwards compatibility
Closely tied to language and application

Object-Relational Model

Synthesis of two worlds
Upward compatibility
Robustness of mature systems

Hybrid approach
Legacy problems

Evolution of DBMS’s

Object-oriented DBMS’s failed because they
did not offer the efficiencies of well-
entrenched relational DBMS’s.
Object-relational extensions to relational
DBMS’s capture much of the advantages of
OO, yet retain the relation as the fundamental
abstraction.

Main Features
Relation is still the fundamental abstraction,

with integration of OO features

Structured Types
Non-atomic types

Methods
Special operations can be defined for a type

References
Pointers to tuples

Object Orientation
Abstract data types

defining classes with data structure and operation on
them whose details are hidden

Object Identity
every entity is uniquely identifiable

Polymorphism and overloading
to distinguish between two or more operation having the
same name that have different semantics or that operate
on values of different types

Inheritance
share structure and behaviour among related types

OO – OR Mapping

Structured Types– SQL99

UDT – User Defined Type
A UDT can be the type of a table
A UDT can be the type of an attribute belonging
to some table
A UDT can inherit from another UDT

Three kinds of UDTs

Distinct types
Structured UDTs as values
Structured UDTs as objects

Distinct types
CREATE TYPE shoe_size AS INTEGER FINAL
CREATE TYPE iq AS INTEGER FINAL

CREATE TABLE demograph_people (
name CHARACTER VARYING (50),
footsies shoe_size,
smarts iq,
last_purchase DECIMAL(5,2))

Distinct types
Incorrect use of distinct types

SELECT name
FROM demograph_people
WHERE footsies > smart

Correct use: CAST
…
WHERE

CAST (footsies TO INTEGER)
>
CAST (smarts TO INTEGER)

Distinct types (DB2)

CREATE DISTINCT TYPE shoe_size AS INTEGER
WITH COMPARISONS

Keyword DISTINCT is required
Generates functions to cast between the distinct type
and its source type
WITH COMPARISONS is required for almost all base
types and generates support for the comparison
operators (=, <>, <, <=, >, >=).

Structured UDTs as values
Address

Number, street_name, apartment_number, city,
state, postal_code

Movie
Title, length, description, …

Can be used as first-class type
Can have functions associated

Comparison (equals) function, …

Create type syntax

CREATE type-name
AS representation
[[NOT] INSTANTIABLE]
[[NOT] FINAL]
[reference-type-specification]
[method-specification-list]

Type definition
CREATE TYPE addressLongT AS (
Number CHARACTER(6),
Street ROW (

street_name CHARACTER VARYING(35),
street_type CHARACTER VARYING (10)

DEFAULT ‘Street’),
City CHARACTER VARYING (35),
State CHARACTER(2) NOT NULL,
Zip_code ROW (

base CHARACTER(5),
plus4 CHARACTER(4)))

NOT FINAL

Type definition (DB2)
CREATE TYPE addressT AS (
Number CHARACTER(6),
City CHARACTER VARYING(35),
State CHARACTER(2))
NOT FINAL
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

Type definition (DB2)
CREATE TYPE PersonT AS (
name VARCHAR(50),
address addressT)
NOT FINAL
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

Type definition (DB2)
CREATE TYPE PersonT AS (
name VARCHAR(50),
address REF(addressT))
NOT FINAL
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

Type definition (DB2)
CREATE TYPE addressT AS (
Number CHARACTER(6),
City CHARACTER VARYING(35),
State CHARACTER(2))
NOT FINAL
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

METHOD DISTANCE (addressT)
RETURNS FLOAT
LANGUAGE JAVA
PARAMETER STYLE DB2GENERAL -- to be used with structured and JAVA

NO SQL -- no SQL statement allowed in method

Accessing attributes
Suppose to have a relation customer (c) with
a column (cust_addr) defined of type
addressLongT
c.cust_addr.number
c.cust_addr.zip_code.base
c.cust_addr[2].zip_code.base

Columns can be defined as ROW and also as
ARRAY.

Accessing attributes (DB2)

Suppose to have a relation customer (c) with
a column (cust_addr) defined of type
addressLongT
c.cust_addr..number
c.cust_addr..zip_code..base
c.cust_addr[2]..zip_code..base

Accessing attributes (DB2)
CREATE FUNCTION addrT_transform (

addr addressT)
RETURNS VARCHAR(100) LANGUAGE SQL
RETURN

addr..number || ', ' || addr..city || ', ' || addr..state

CREATE TRANSFORM FOR addressT
DB2_PROGRAM (
FROM SQL WITH FUNCTION addrT_transform)

Accessing attributes
Use the alias (or correlation) name to avoid
ambiguities:

SELECT
customers.name,
customers.cust_addr.street_name

FROM
customers, customers.cust_addr

Should the expression cust_addr.street_name be
resolved as schema.table.column or
table.column.attribute?

Accessing attributes

Use the correlation name to avoid
ambiguities:

SELECT
c.name,
c.cust_addr.street_name

FROM
customers AS c

Observer and Mutators

Allow to access, set and retrive, the attributes
of UDTs.
They are methods that the system
automativcally provides.

Observer and Mutators

UPDATE movie_table
SET movie = movie.runs(113)
WHERE

title = ‘Star Wars’

UPDATE movie_table
SET movie.runs = 113
WHERE

title = ‘Star Wars’

SELECT movie.runs()
FROM movie_table
WHERE

title = ‘Star Wars’

SELECT movie.runs
FROM movie_table
WHERE

title = ‘Star Wars’

Observer and Mutators

UPDATE movie_table
SET movie = movie..runs(113)
WHERE

title = ‘Star Wars’

UPDATE movie_table
SET movie..runs = 113
WHERE

title = ‘Star Wars’

SELECT movie..runs()
FROM movie_table
WHERE

title = ‘Star Wars’

SELECT movie..runs
FROM movie_table
WHERE

title = ‘Star Wars’

Method definition

Methods are defined in two ways and in two
places, and both are required

Define the signature among the type definition
Define the implementation

Method definition

CREATE TYPE movieT AS (
title CHARACTER VARYING (100),
description CHARACTER VARYING (500),
runs INTEGER)

NOT FINAL
METHOD length_interval ()

RETURNS INTERVAL HOUR(2) TO MINUTE

Method definition

CREATE INSTANCE METHOD
length_interval ()

RETURNS INTERVAL HOUR(2) TO MINUTE
FOR movie
/*

implementation
*/
RETURN …

Method invocation
CREATE TABLE movie_table (

stock_number CHARACTET(8),
movie_info movieT,
rental_quantity INTEGER,
rental_cost DECIMAL(5,2))

SELECT mt.movie_info.length_interval
FROM movie_table AS mt
WHERE mt.movie_info.title = ‘Star Wars’

Method definition (DB2)
CREATE TYPE addressT AS (
Number CHARACTER(6),
City CHARACTER VARYING(35),
State CHARACTER(2))
NOT FINAL
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

METHOD SAMECITY (addr addressT)
RETURNS INTEGER
LANGUAGE SQL

Method definition (DB2)
CREATE METHOD SAMECITY (addr addressT)
RETURNS INTEGER
FOR addressT
RETURN (

CASE WHEN (self..city = addr..city)
THEN 1
ELSE 0

END)

Constructors

Each defined UDT has a constructor
The system automatically provides for a
niladic constructor
Users usually need for more sophisticated
constructors
Constructors method are marked with the
keyword CONSTRUCTOR in the method
definition

Constructor definition
CREATE CONSTRUCTOR METHOD movieT (

name CHARACTER VARYING(100),
descr CHARACTER VARYING(500),
length INTEGER)

RETURNS movieT
BEGIN

SET SELF.title = name;
SET SELF.description = descr;
SET SELF. runs = length;
RETURN SELF;

END

Constructor definition (DB2)
CREATE function addressT (

num CHARACTER(6),
cit CHARACTER VARYING(35),
sta CHARACTER(2))

RETURNS addressT
RETURN addressT()..number(num)..city(cit)..state(sta)

Constructor definition
CREATE TABLE TestTable (

col1 INTEGER,
col2 address)

insert into TestTable values (2,
address20()..number('a')..city('b')..

state('c'))

insert into TestTable values (8, address20('d','e','f'))

Storing in the database
INSERT INTO movie_table VALUES (

‘152208-A’, -- stock-number
NEW movieT(

‘Star Wars’,
‘Action-Fantasy. Part IV in a George Lucas
epic, Star Wars: … ’

125), -- new MOVIE instance
23, -- rental-quantity in stock
2.99) -- rental-cost

Storing in the database (DB2)
INSERT INTO movie_table VALUES (

‘152208-A’, -- stock-number
movieT()..title(‘Star Wars’)..description(‘Action-
Fantasy. Part IV in a George Lucas epic, Star Wars:
… ’)..runs(125)),

-- new MOVIE instance
23, -- rental-quantity in stock
2.99) -- rental-cost

Storing in the database (DB2)
INSERT INTO movie_table VALUES (

‘152208-A’, -- stock-number
movieT(

‘Star Wars’,
‘Action-Fantasy. Part IV in a George Lucas
epic, Star Wars: … ’

125), -- new MOVIE instance using the
-- constructor function

23, -- rental-quantity in stock
2.99) -- rental-cost

Structured UDTs as objects

Define a special sort of table (typed table or
table of type) to represents instances of a
type.
Each instance is unique and has its own
indenty.

Each instance behaves exactly as an object
Each row stored in the table is an instance, or
a value, of the associated structured UDT.

Typed tables

The typed table has a column for each
attributes in the UDT associated, plus an
object-identifier known as Self-referencing
column.

CREATE TABLE movie_TypedTable OF movieT
REF IS oidName SYSTEM GENERATED

Typed tables

runsdescriptiontitle(self-reference)

runs
description
title

self-reference specification

In the type definition the reference type has
to be specified:
CREATE TYPE movieT AS (attributes)

NOT FINAL
<reference-type specification>

Types of self-reference
specification

<reference-type specification> can be:
System-generated ::= REF IS SYSTEM GENERATED
User-defined ::= REF USING <predefined SQL type>
Derived ::= REF FROM <attribute-list from the structured
type>

When defining a typed table, the <reference-type
specification> must be specified again(redundantly),
associating it with a name (the name of the self-
referencing column).

Values for self-reference

REF IS <selfColumnName>
SYSTEM GENERATED: generated by the
system.
USER GENERATED: it is responsability of the
application to choose the values stored in each
row of the column.
DERIVED: the system uses the values in the
specified columns (in the type definition) to derive
the reference value. The columns should be
under a PRIMARY KEY or a UNIQUE constraint.

References
CREATE TYPE movieT AS (

title CHARACTER VARYING (100),
description CHARACTER VARYING (500),
runs INTEGER)

INSTANTIABLE
NOT FINAL
REF IS SYSTEM GENERATED

CREATE TYPE playerT AS (
name CHARACTER VARYING (35)
role CHARACTER VARYING (35))
film REF (movieT))

NOT FINAL
REF IS FROM (name, role, film)

References

CREATE TABLE movies OF movieT
title WITH OPTION CONSTRAINT NOT NULL,
REF IS oidMovie SYSTEM GENERATED

CREATE TABLE actors OF playerT
PRIMARY KEY (name, role, film),
film WITH OPTION SCOPE movies,
REF IS oidActor DERIVED

References

???
???
oidActor

???RossAki
???SkywalkerHamill
FilmRoleName

Actors

???
???
oidMovie

112FantasyFinal Fantasy
100FantasyStar Wars
RunsDescriptionTitle

movies

Following the reference
Retrive values:

SELECT film -> runs
FROM actors
WHERE name = ‘Hamill’ and role = ‘Skywalker’

The statement retrives a value from the movies table without
specifing that table in the FROM clause. The

Retrive structured type instance:
SELECT DEREF (film)
FROM actors
WHERE name = ‘Hamill’ and role = ‘Skywalker’

Typed table (DB2)

create table Address of addressT (
ref is oidAddress system generated,
number WITH OPTIONS NOT NULL,
state WITH OPTIONS NOT NULL,
CONSTRAINT pk PRIMARY KEY (

number, state))

Typed table (DB2)
CREATE TYPE addressT AS (

street varchar(50),
city varchar(50),
zip varchar(4))

NOT FINAL
INSTANTIABLE
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

CREATE TYPE personT AS (
name varchar(50),
age varchar(50),
address REF(addressT)

)
NOT FINAL
INSTANTIABLE
MODE DB2SQL
WITH FUNCTION ACCESS
REF USING INTEGER

Typed table (DB2)
create table Address of addressT (
ref is oidAddress system generated,
street WITH OPTIONS NOT NULL,
city WITH OPTIONS NOT NULL,
CONSTRAINT pkAddress PRIMARY KEY (street, city))

create table Person of personT (
ref is oidPerson system generated,
name WITH OPTIONS NOT NULL,
age WITH OPTIONS NOT NULL,
CONSTRAINT pkPerson PRIMARY KEY (name, age),
address WITH OPTIONS SCOPE Address)

Typed table (DB2)
create table Address of addressT (
ref is oidAddress system generated,
street WITH OPTIONS NOT NULL,
city WITH OPTIONS NOT NULL,
CONSTRAINT pk PRIMARY KEY (street, city))

create table X (a varchar(50) NOT NULL, b varchar(50), c
varchar(50), d varchar(50), e varchar(50),

PRIMARY KEY (a),
FOREIGN KEY (b,c) REFERENCES Person (name, age),
FOREIGN KEY (d,e) REFERENCES Address (street, city))

Insert into typed table (DB2)

insert into Address values
(AddressT(5),'a','b','c');

insert into Person values
(PersonT(5),'nome','eta',AddressT(5));

Following references DB2

select name, address->city, address->zip
from Person

No mention to the Address table!

Inheritance

A type hierarchy in SQL is a collection of
UDTs.

Movie

DVDVHS

DTS Sound Dolby Digital Sound

Inheritance on types

Super-type definition
CREATE TYPE movieT AS (

title CHARACTER VARYING (100),
description CHARACTER VARYING (500),
runs INTEGER)

NOT INSTANTIABLE
NOT FINAL

Movie

DVDVHS

DTS Sound Dolby Digital Sound

Inheritance on types

Sub-type definition
CREATE TYPE dvdT UNDER movieT AS (

stock-number INTEGER,
rental_price DECIMAL(5,2),
extra_feature feature_desc ARRAY[10])

INSTANTIABLE
NOT FINAL

Movie

DVDVHS

DTS Sound Dolby Digital Sound

Inheritance on typed-tables

CREATE TABLE short_movies OF movieT
REF IS oidMovie SYSTEM GENERATED,
runs WITH OPTION CONSTRAINT smc_runs

CHECK (runs < 90)

CREATE TABLE short_dvd OF dvdT
UNDER short_movies
REF IS oidDvd SYSTEM GENERATED Movie

DVDVHS

Retrieval in hierarchies

The query:
SELECT titles, runs
FROM short_movies
WHERE runs < 60

Retrives title and runs from short_movies
tables, then retrives title and runs from
short_dvd table! Movie

DVDVHS

Retrieval in hierarchies

The query:
SELECT titles, runs
FROM ONLY (short_movies)
WHERE runs < 60

Retrives title and runs from short_movies that
are not available on dvd (and on VHS).

Movie

DVDVHS

The type predicate

Allows to determine the type of a structured
type instance.

SELECT name, title
FROM actors
WHERE film IS OF (dvd)

WHERE film IS NOT OF (dvd)
WHERE film IS OF (ONLY dvd)

The hierarchy model

There are several mental models to represent
relationships between the tables in a table
hierarchy and the rows in those tables.

Duplicate-row model
Single-table model
Union model

Duplicate-row model

82Description 4Wizards
90Description 3Star Wars
93Description 2Dr. Stangelove
100Description 1Rocky Horror

Description 3
Description 2

Star Wars
Dr. Stangelove

4.99SF93390
2.49DR84693

movie table

dvd table

Single-table model

82Description 4Wizards

100Description 1Rocky Horror

4.99SF93390Description 3Star Wars
Description 2Dr. Stangelove 2.49DR84693

movie
DVD
DVD
movie

movie + dvd table

Union model

90Description 3Star Wars
100Description 1Rocky Horror

Description 3
Description 2

Star Wars
Dr. Stangelove

4.99SF93390
2.49DR84693

movie table

dvd table

Hierarchies in DB2

Conform to the standard!

FINE

References - I

Allow a tuple t refer to a tuple s rather than
including s in t

References - II
If attribute A has a type that is a reference to a tuple in
relation with schema R, we denote A as A(*R)
If A is a set of references, we denote A as A({*R})

References – SQL99 - I
A table which type is a UDT may have a reference
column that serves as its “ID”

In CREATE TABLE statement, add

REF IS <attribute name> <how generated>

Where <how generated> is either
SYSTEM_GENERATED : DBMS generates unique IDs
DERIVED: DBMS uses primary key of the relation for IDs

References – SQL99 – I -
Example
CREATE TYPE MovieType AS (

title CHAR(30),
year INTEGER

);

CREATE TABLE Movie OF MovieType (

REF IS movieID DERIVED,
PRIMARY KEY (title, year)

);

References – SQL99 - II
Reference to a tuple of type T

REF(T)

Reference to tuples in relation R, where R is a table
whose type is the UDT T
REF(T) SCOPE R

References – SQL99 - II –
Example
CREATE TYPE StarType AS (

name CHAR(30),
address AddressType,
bestMovie REF(MovieType) SCOPE Movie

);

Hamill

bestMovieAddressName

LASunset
Blvd

citystreet

ORDB Example - Oracle
CREATE TYPE Name AS OBJECT (

first_name CHAR (15),
last_name CHAR (15),
middle_initial CHAR (1);
MEMBER PROCEDURE initialize,;

Code to define operations – in this case simply a class constructor
CREATE TYPE BODY Name AS

MEMBER PROCEDURE initialize IS
BEGIN

first_name := NULL;
last_name := NULL;
middle_initial := NULL;

END initialize;
END;

Using the new type in a table
CREATE TABLE person(

person_ID NUMBER;
person_name Name,
PRIMARY KEY (person_ID));

Structured Types - I

Attributes of relation schemas can be
Atomic
Relation schemas: Nested Relations

Structured Types - II

4NF 1NF

Nested

Nested Relations – SQL99
Example
CREATE TYPE AddressType AS (

street CHAR(50),
city CHAR(20)

);

CREATE TYPE AddressTypeTable
AS TABLE OF AddressType;

CREATE TYPE StarType AS (
name CHAR(30),
address AddressTypeTable

);

CREATE TABLE MovieStar OF StarType;

Methods – SQL99

Special operations defined for a type
In SQL, implementation defined with
Presistent Stored Modules (PSM) language

METHOD m() RETURNS <TYPE>;

Methods – SQL99 - Example
CREATE TYPE AddressType AS (

street CHAR(50),
city CHAR(20)

)
METHOD houseNumber() RETURNS CHAR(10);

CREATE METHOD houseNumber() RETURNS CHAR(10) FOR AddressType
BEGIN
…

END;

