
XML Data Management

P. Atzeni (heavily from Peter Wood)

P. Atzeni (heavily from Peter Wood) XML Data Management 1 / 239

Outline

1 Introduction

2 XML Fundamentals

3 Document Type Definitions

4 XML Schema Definition Language

5 XPath

6 XQuery

P. Atzeni (heavily from Peter Wood) XML Data Management 2 / 239

Introduction

Chapter 1

Introduction

P. Atzeni (heavily from Peter Wood) XML Data Management 3 / 239

Introduction

What is XML?

The eXtensible Markup Language (XML) defines a generic syntax
used to mark up data with simple, human-readable tags
Has been standardized by the World Wide Web Consortium
(W3C) as a format for computer documents
Is flexible enough to be customized for domains as diverse as:

I Web sites
I Electronic data interchange
I News feeds (RSS, e.g., BBC World News)
I Vector graphics
I Mathematical expressions
I Microsoft Word documents
I Music libraries (e.g., iTunes)
I . . .

P. Atzeni (heavily from Peter Wood) XML Data Management 4 / 239

http://www.w3.org/
http://feeds.bbci.co.uk/news/world/rss.xml

Introduction

What is XML? (2)

Data in XML documents is represented as strings of text
This data is surrounded by text markup, in the form of tags, that
describes the data
A particular unit of data and markup is called an element
XML specifies the exact syntax of how elements are delimited by
tags, what a tag looks like, what names are acceptable, and so on

P. Atzeni (heavily from Peter Wood) XML Data Management 5 / 239

Introduction

Which is Easier to Understand?

TCP/IP
Stevens
Foundations of Databases
Abiteboul
Hull
Vianu
The C Programming Language
Kernighan
Ritchie
Prentice Hall
...

<bib>
<book>

<title>TCP/IP</title>
<author>Stevens</author>

</book>
<book>

<title> ... </title>
...

</book>
</bib>

P. Atzeni (heavily from Peter Wood) XML Data Management 6 / 239

Introduction

XML vs. HTML

Markup in an XML document looks similar to that in an HTML
document
However, there are some crucial differences:

I XML is a meta-markup language: it doesn’t have a fixed set of tags
and elements

I To enhance interoperability, people may agree to use only certain
tags (as defined in a DTD or an XML Schema — see later)

I Although XML is flexible in regard to elements that are allowed, it is
strict in many other respects (e.g., closing tags are required)

I Markup in XML only describes a document’s structure; it doesn’t
say anything about how to display it

P. Atzeni (heavily from Peter Wood) XML Data Management 7 / 239

Introduction

Very Brief Review of HTML

A document structure and hypertext specification language
Specified by the World Wide Web Consortium (W3C)
Designed to specify the logical structure of information
Intended for presentation as Web pages
Text is marked up with tags defining the document’s logical units,
e.g.

I title
I headings
I paragraphs
I lists
I . . .

The displayed properties of the logical units are determined by the
browser (and stylesheet, if present)

P. Atzeni (heavily from Peter Wood) XML Data Management 8 / 239

http://en.wikipedia.org/wiki/Hypertext
http://www.w3.org/

Introduction

HTML Example

The following is a (very simple) complete HTML document:
<html>

<head>
<title>A Title</title>

</head>
<body>

<h1>A Heading</h1>
</body>

</html>
When loaded in a browser

I “A Title” will be displayed in the title bar of the browser
I “A Heading” will be displayed big and bold as the page contents

P. Atzeni (heavily from Peter Wood) XML Data Management 9 / 239

Introduction

HTML, XHTML and XML

These days, most web pages use XHTML rather than HTML
XHTML uses the syntax of XML
XHTML corresponds to a particular XML vocabulary or document
type
A document type is specified using a Document Type Definition
(DTD) — see later
HTML is essentially a less strict form of XHTML

P. Atzeni (heavily from Peter Wood) XML Data Management 10 / 239

Introduction

Limitations of (X)HTML

So why not use XHTML rather than XML?

(X)HTML defines a fixed set of elements (XHTML is one XML
vocabulary)
elements have document structuring semantics
for presentation to human readers
organisations want to be able to define their own elements
applications need to exchange structured data too
applications cannot consume (X)HTML easily
use XML for data exchange and (X)HTML for document
representation

P. Atzeni (heavily from Peter Wood) XML Data Management 11 / 239

Introduction

XML versus Relational Data

Why not use data from relational databases for exchange?
XML is more flexible:

I XML data is semi-structured rather than structured
I Conformance of the data to a schema is not mandatory
I XML schemas, if used, allow for more varied structures

Relational data can always be (and often is) wrapped as XML

P. Atzeni (heavily from Peter Wood) XML Data Management 12 / 239

Introduction

Motivating Example

Say we want to store information about a personal CD library
The CDs are all of classical music
Some CDs contain simply solo (e.g., piano) works
Some CDs have orchestral works (with orchestra, conductor)
Some CDs contain performances of works by different composers
We want to avoid repeating information in the descriptions
We have only 4 CDs (see the next few slides)!

P. Atzeni (heavily from Peter Wood) XML Data Management 13 / 239

Introduction

Example (1)

<CD-library>
<CD number="724356690424">

...
</CD>

<CD number="419160-2">
...

</CD>

<CD number="449719-2">
...

</CD>

<CD number="430702-2">
...

</CD>
</CD-library>

P. Atzeni (heavily from Peter Wood) XML Data Management 14 / 239

Introduction

Example (2)

<CD number="724356690424">
<performance>

<composer>Frederic Chopin</composer>
<composition>Waltzes</composition>
<soloist>Dinu Lipatti</soloist>
<date>1950</date>

</performance>
</CD>

P. Atzeni (heavily from Peter Wood) XML Data Management 15 / 239

Introduction

Example (3)

<CD number="419160-2">
<composer>Johannes Brahms</composer>
<soloist>Emil Gilels</soloist>
<performance>

<composition>Piano Concerto No. 2</composition>
<orchestra>Berlin Philharmonic</orchestra>
<conductor>Eugen Jochum</conductor>
<date>1972</date>

</performance>
<performance>

<composition>Fantasias Op. 116</composition>
<date>1976</date>

</performance>
</CD>

P. Atzeni (heavily from Peter Wood) XML Data Management 16 / 239

Introduction

Example (4)

<CD number="449719-2">
<soloist>Martha Argerich</soloist>
<orchestra>London Symphony Orchestra</orchestra>
<conductor>Claudio Abbado</conductor>
<date>1968</date>
<performance>

<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
<performance>

<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
</CD>

P. Atzeni (heavily from Peter Wood) XML Data Management 17 / 239

Introduction

Example (5)
<CD number="430702-2">

<composer>Antonin Dvorak</composer>
<performance>

<composition>Symphony No. 9</composition>
<orchestra>Vienna Philharmonic</orchestra>
<conductor>Kirill Kondrashin</conductor>
<date>1980</date>

</performance>
<performance>

<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>

</performance>
</CD>

P. Atzeni (heavily from Peter Wood) XML Data Management 18 / 239

Introduction

Future of XML

XML offers the possibility of truly cross-platform, long-term data
formats:

I Much of the data from the original moon landings is now effectively
lost

I Even reading an older Word file might already be problematic

XML is a very simple, well-documented data format
Any tool that can read text files can read an XML document
XML may be the most portable and flexible document format since
the ASCII text file

P. Atzeni (heavily from Peter Wood) XML Data Management 19 / 239

Introduction

Overview

In these lectures we are going to look at
I some basic notions of XML
I how to define XML vocabularies (DTDs, XML schemas)
I how to query XML documents (XPath, XQuery)
I how to process these queries (very little, indeed)

P. Atzeni (heavily from Peter Wood) XML Data Management 20 / 239

Introduction

Literature

A. Møller and M. Schwartzbach. An Introduction to XML and Web
Technologies. Addison Wesley, 2006.
S. Abiteboul, I. Manolescu, P. Rigaux, M-C. Rousset and P.
Senellart. Web Data Management. Cambridge University Press,
2012.
E.R. Harold, W.S. Means. XML in a Nutshell. O’Reilly, 2004
H. Katz (editor). XQuery from the Experts. Addison Wesley, 2004
These slides . . .

P. Atzeni (heavily from Peter Wood) XML Data Management 21 / 239

XML Fundamentals

Chapter 2

XML Fundamentals

P. Atzeni (heavily from Peter Wood) XML Data Management 22 / 239

XML Fundamentals

Elements, Tags, and Data

A very simple fragment of an XML document:

<person>
Alan Turing

</person>

Composed of a single element whose name is person

Element is delimited by the start tag <person> and the end tag
</person>

Everything between the start tag and end tag (exclusive) is the
element’s content

P. Atzeni (heavily from Peter Wood) XML Data Management 23 / 239

XML Fundamentals

Elements, Tags, and Data (2)

Content of the above element is the text string Alan Turing

Whitespace is part of the content (although many applications
choose to ignore it)
<person> and </person> are markup,
The string Alan Turing and surrounding whitespace are
character data

P. Atzeni (heavily from Peter Wood) XML Data Management 24 / 239

XML Fundamentals

Elements, Tags, and Data (3)

Special syntax for empty elements, elements without content
I Each can be represented by a single tag that begins with < but

ends with />
I e.g., <person/> instead of <person></person>

XML is case sensitive, i.e. <Person> is not the same as <PERSON>
(or <person>)

P. Atzeni (heavily from Peter Wood) XML Data Management 25 / 239

XML Fundamentals

XML Documents and Trees

XML documents can be represented as trees

<person>
<name>

<first_name>Alan</first_name>
<last_name>Turing</last_name>

</name>
<profession>

computer scientist
</profession>
<profession>

mathematician
</profession>

</person>

P. Atzeni (heavily from Peter Wood) XML Data Management 26 / 239

XML Fundamentals

XML Documents and Trees

XML documents can be represented as trees

<person>
<name>

<first_name>Alan</first_name>
<last_name>Turing</last_name>

</name>
<profession>

computer scientist
</profession>
<profession>

mathematician
</profession>

</person>
Turing

last_namefirst_name

Alan

name

computer
scientist

mathematician

profession profession

person

P. Atzeni (heavily from Peter Wood) XML Data Management 26 / 239

XML Fundamentals

XML Documents and Trees (2)

The person element contains three child elements: one name and
two profession elements
The person element is called the parent element of these three
elements
An element can have an arbitrary number of child elements and
the elements may be nested arbitrarily deeply
Children of the same parent are called siblings
Overlapping tags are prohibited, so the following is not possible:

example from HTML

P. Atzeni (heavily from Peter Wood) XML Data Management 27 / 239

XML Fundamentals

XML Documents and Trees (3)

Every XML document has one element without a parent
This element is called the document’s root element (sometimes
called document element)
The root element contains all other elements of a document

P. Atzeni (heavily from Peter Wood) XML Data Management 28 / 239

XML Fundamentals

Attributes

XML elements can have attributes
An attribute is name-value pair attached to an element’s start tag
Names are separated from values by an equals sign
Values are enclosed in single or double quotation marks
An element cannot have two attributes with the same name
Example:

<person born=’1912/06/23’ died=’1954/06/07’>
Alan Turing

</person>

The order in which attributes appear is not significant

P. Atzeni (heavily from Peter Wood) XML Data Management 29 / 239

XML Fundamentals

Attributes (2)

We could model the contents of the original document as
attributes:

<person>
<name first=’Alan’ last=’Turing’/>
<profession value=’computer scientist’/>
<profession value=’mathematician’/>

</person>

This raises the question of when to use child elements and when
to use attributes
There is no simple answer

P. Atzeni (heavily from Peter Wood) XML Data Management 30 / 239

XML Fundamentals

Attributes vs. Child Elements

Some people argue that attributes should be used for metadata
(about the element) and elements for the information itself

I It’s not always easy to distinguish between the two

Attributes are limited in structure (their value is simply a string)
There can also be no more than one attribute with a given name
Consequently, an element-based structure is more flexible and
extensible

P. Atzeni (heavily from Peter Wood) XML Data Management 31 / 239

XML Fundamentals

Entities and Entity References

Character data inside an element may not contain, e.g., a raw
unescaped opening angle bracket <
If this character is needed in the text, it has to be escaped by
using the < entity reference
lt is the name of the entity; & and ; delimit the reference
XML predefines five entities:

lt <
amp &
gt >
quot "
apos ’

We will cover entities in more detail when discussing DTDs later

P. Atzeni (heavily from Peter Wood) XML Data Management 32 / 239

XML Fundamentals

CDATA Sections

When an XML document includes samples of XML or HTML
source code, all <, >, and & characters must be encoded using
entity references
This replacement can become quite tedious
To facilitate the process, literal code can be enclosed in a CDATA
section
Everything between <![CDATA[and]]> is treated as raw
character data
The only thing that cannot appear in a CDATA section is the end
delimiter]]>

P. Atzeni (heavily from Peter Wood) XML Data Management 33 / 239

XML Fundamentals

Comments

XML documents can also be commented
Similar to HTML comments, they begin with <!-- and end with -->

Comments may appear
I anywhere in character data
I before or after the root element
I However, NOT inside a tag or another comment

XML parsers may or may not pass along information found in
comments

P. Atzeni (heavily from Peter Wood) XML Data Management 34 / 239

XML Fundamentals

Processing Instructions

In HTML, comments are sometimes abused to support
nonstandard extensions (e.g., server-side includes)
Unfortunately,

I comments may not survive being passed through several different
HTML editors and/or processors

I innocent comments may end up as input to an application

XML uses a special construct to pass information on to
applications: a processing instruction
It begins with <? and ends with ?>

Immediately following the <? is the target (possibly the name of
the application)

P. Atzeni (heavily from Peter Wood) XML Data Management 35 / 239

XML Fundamentals

Processing Instructions (2)

Examples:

Associating a stylesheet with an XML document:

<?xml-stylesheet type="text/xsl" href="style.xsl"?>

Embedded PHP in (X)HTML:

<?php
mysql_connect("database...",

"user",
"password");

...
mysql_close();

?>

P. Atzeni (heavily from Peter Wood) XML Data Management 36 / 239

XML Fundamentals

XML Declaration

The XML declaration looks like a processing instruction, but only
gives some information about the document:

<?xml version=’1.0’
encoding=’US-ASCII’
standalone=’yes’?>

version: at the moment 1.0 and 1.1 are available (we focus on 1.0)
encoding: defines the character set used (e.g. ASCII, Latin-1,
Unicode UTF-8)
standalone: determines if some other file (e.g. DTD) has to be
read to determine proper values for parts of the document

P. Atzeni (heavily from Peter Wood) XML Data Management 37 / 239

XML Fundamentals

Well-Formedness

A well-formed document observes the syntax rules of XML:

Every start tag must have a matching end tag
Elements may not overlap
There must be exactly one root element
Attribute values must be quoted
An element may not have two attributes with the same name
Comments and processing instructions may not appear inside
tags
No unescaped < or & signs may occur in character data

P. Atzeni (heavily from Peter Wood) XML Data Management 38 / 239

XML Fundamentals

Well-Formedness (2)

XML names must be formed in certain ways:
I May contain standard letters and digits 0 through 9
I May include the punctuation characters underscore (_), hyphen (-),

and period (.)
I May only start with letters or the underscore character
I There is no limit to the length

The above list is not exhaustive; for a complete list look at the
W3C specification
A parser encountering a non-well-formed document will stop its
parsing with an error message

P. Atzeni (heavily from Peter Wood) XML Data Management 39 / 239

http://www.w3.org/TR/REC-xml/

XML Fundamentals

XML Namespaces

MathML is an XML vocabulary for mathematical expressions
SVG (Scalable Vector Graphics) is an XML vocabulary for
diagrams
say we want to use XHTML, MathML and SVG in a single XML
document
how does a browser know which element is from which
vocabulary?
e.g., both SVG and MathML define a set element
we shouldn’t have to worry about potential name clashes
we should be able to specify different namespaces, one for each
of XHTML, MathML and SVG

P. Atzeni (heavily from Peter Wood) XML Data Management 40 / 239

http://www.w3.org/Math/
http://www.w3.org/Graphics/SVG/
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/html-xml/example.xhtml
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/html-xml/example.xhtml

XML Fundamentals

The namespaces solution

The solution is to qualify element names with URIs
A URI (Universal Resource Identifier) is usually used for
identifying a resource on the Web
(A Uniform Resource Locator (URL) is a special type of URI)
A qualified name then consists of two parts:
namespace:local-name

e.g., <http://www.w3.org/2000/svg:circle ... />

where http://www.w3.org/2000/svg is a URI and namespace
The URI does not have to reference a real Web resource
URIs only disambiguate names; they don’t have to define them
In this case, the browser knows the SVG namespace and behaves
accordingly

P. Atzeni (heavily from Peter Wood) XML Data Management 41 / 239

XML Fundamentals

Namespace declarations

using URIs everywhere is very cumbersome
so namespaces are used indirectly using

I namespace declarations and
I associated prefixes (user-specified)

<... xmlns:svg="http://www.w3.org/2000/svg">
<p>A circle looks like this
...

<svg:circle ... />
...

</...>

The xmlns:svg attribute
I declares the namespace http://www.w3.org/2000/svg
I associates it with prefix svg

P. Atzeni (heavily from Peter Wood) XML Data Management 42 / 239

XML Fundamentals

Scope of namespace declarations

the scope of a namespace declaration is
I the element containing the declaration
I and all its descendants (those elements nested inside the element)
I can be overridden by nested declarations

both elements and attributes can be qualified with namespaces
unprefixed element names are assigned a default namespace
default namespace declaration: xmlns="URI"

P. Atzeni (heavily from Peter Wood) XML Data Management 43 / 239

XML Fundamentals

Namespaces example
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:svg="http://www.w3.org/2000/svg">
...
<p>A circle looks like this

<svg:svg ... >
...
<svg:circle ... />
...

</svg:svg>
and has
...

</p>
</html>

html and p are in the default namespace
(http://www.w3.org/1999/xhtml)

P. Atzeni (heavily from Peter Wood) XML Data Management 44 / 239

XML Fundamentals

Namespaces example (2)
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:svg="http://www.w3.org/2000/svg">
...
<p>A circle looks like this

<svg:svg ... >
...
<svg:circle ... />
...

</svg:svg>
and has
...

</p>
</html>

namespace for svg and circle is http://www.w3.org/2000/svg
note that svg is used both as a prefix and as an element name

P. Atzeni (heavily from Peter Wood) XML Data Management 45 / 239

XML Fundamentals

Summary

This chapter gave a brief summary of XML
Only the most important aspects (which are needed later on) were
covered
More details can be found

I in the books listed in the Introduction
I on numerous websites, e.g., World Wide Web Consortium or

w3schools.com

P. Atzeni (heavily from Peter Wood) XML Data Management 46 / 239

http://www.w3.org/
http://www.w3schools.com

Document Type Definitions

Chapter 3

Document Type Definitions

P. Atzeni (heavily from Peter Wood) XML Data Management 47 / 239

Document Type Definitions

Document Types

A document type is defined by specifying the constraints which
any document which is an instance of the type must satisfy
For example,

I in an HTML document, one paragraph cannot be nested inside
another

I in an SVG document, every circle element must have an r
(radius) attribute

Document types are
I useful for restricting authors to use particular representations
I important for correct processing of documents by software

P. Atzeni (heavily from Peter Wood) XML Data Management 48 / 239

Document Type Definitions

Languages for Defining Document Types

There are many languages for defining document types on the
Web, e.g.,

I document type definitions (DTDs)
I XML schema definition language (XSDL)
I relaxNG
I schematron

We will consider the first two of these

P. Atzeni (heavily from Peter Wood) XML Data Management 49 / 239

Document Type Definitions

Document Type Definitions (DTDs)

A DTD defines a class of documents
The structural constraints are specified using an extended
context-free grammar
This defines

I element names and their allowed contents
I attribute names and their allowed values
I entity names and their allowed values

P. Atzeni (heavily from Peter Wood) XML Data Management 50 / 239

Document Type Definitions

Valid XML

A valid XML document
I is well-formed and
I has been validated against a DTD
I (the DTD is specified in the document — see later)

P. Atzeni (heavily from Peter Wood) XML Data Management 51 / 239

Document Type Definitions

DTD syntax

The syntax for an element declaration in a DTD is:
<!ELEMENT name (model) >
where

I ELEMENT is a keyword
I name is the element name being declared
I model is the element content model (the allowed contents of the

element)

The content model is specified using a regular expression over
element names
The regular expression specifies the permitted sequences of
element names

P. Atzeni (heavily from Peter Wood) XML Data Management 52 / 239

Document Type Definitions

Examples of DTD element declarations

An html element must contain a head element followed by a body
element:
<!ELEMENT html (head, body) >

where "," is the sequence (or concatenation) operator

A list element (not in HTML) must contain either a ul element or
an ol element (but not both):
<!ELEMENT list (ul | ol) >

where "|" is the alternation (or "exclusive or") operator
A ul element must contain zero or more li elements:
<!ELEMENT ul (li)* >

where "*" is the repetition (or "Kleene star") operator

P. Atzeni (heavily from Peter Wood) XML Data Management 53 / 239

Document Type Definitions

Examples of DTD element declarations

An html element must contain a head element followed by a body
element:
<!ELEMENT html (head, body) >

where "," is the sequence (or concatenation) operator
A list element (not in HTML) must contain either a ul element or
an ol element (but not both):
<!ELEMENT list (ul | ol) >

where "|" is the alternation (or "exclusive or") operator

A ul element must contain zero or more li elements:
<!ELEMENT ul (li)* >

where "*" is the repetition (or "Kleene star") operator

P. Atzeni (heavily from Peter Wood) XML Data Management 53 / 239

Document Type Definitions

Examples of DTD element declarations

An html element must contain a head element followed by a body
element:
<!ELEMENT html (head, body) >

where "," is the sequence (or concatenation) operator
A list element (not in HTML) must contain either a ul element or
an ol element (but not both):
<!ELEMENT list (ul | ol) >

where "|" is the alternation (or "exclusive or") operator
A ul element must contain zero or more li elements:
<!ELEMENT ul (li)* >

where "*" is the repetition (or "Kleene star") operator

P. Atzeni (heavily from Peter Wood) XML Data Management 53 / 239

Document Type Definitions

DTD syntax (1)

In the table below:
e denotes any element name, the simplest regular expression
α and β denote regular expressions

DTD Syntax Meaning
e element e must occur
α elements must match α
(α) elements must match α
α , β elements must match α followed by β
α | β elements must match either α or β (not both)
α* elements must match zero or more occurrences of α

P. Atzeni (heavily from Peter Wood) XML Data Management 54 / 239

Document Type Definitions

DTD syntax (2)

DTD Syntax Meaning
α+ one or more sequences matching α must occur
α? zero or one sequences matching α must occur

EMPTY no element content is allowed
ANY any content (of declared elements and text) is allowed

#PCDATA content is text rather than elements

α+ is short for (α,α*)
α? is short for (α|EMPTY)
#PCDATA stands for “parsed character data,” meaning an XML
parser should parse the text to resolve character and entity
references

P. Atzeni (heavily from Peter Wood) XML Data Management 55 / 239

Document Type Definitions

RSS

RSS is a simple XML vocabulary for use in news feeds
RSS stands for Really Simple Syndication, among other things
The root (document) element is rss

rss has a single child called channel

channel has a title child, any number of item children (and
others)
Each item (news story) has a title, description, link, pubDate,
. . .

P. Atzeni (heavily from Peter Wood) XML Data Management 56 / 239

Document Type Definitions

RSS Example Outline
<rss version="2.0">

<channel>
<title> BBC News - World </title>

...
<item>

<title> Hollande becomes French president </title>
...

</item>
<item>

<title> New Greece poll due as talks fail </title>
...

</item>
<item>

<title> EU forces attack Somalia pirates </title>
</item>

...
</channel>

</rss>

P. Atzeni (heavily from Peter Wood) XML Data Management 57 / 239

Document Type Definitions

RSS Example Fragment (channel)

<channel>
<title> BBC News - World </title>
<link>http://www.bbc.co.uk/news/world/...</link>
<description>The latest stories from the World section of

the BBC News web site.</description>
<lastBuildDate>Tue, 15 May 2012 13:42:05 GMT</lastBuildDate>
<ttl>15</ttl>
...

</channel>

P. Atzeni (heavily from Peter Wood) XML Data Management 58 / 239

Document Type Definitions

RSS Example Fragment (first item)

<item>
<title>Hollande becomes French president</title>
<description>Francois Hollande says he is fully aware

of the challenges facing France after being sworn
in as the country’s new president.</description>

<link>http://www.bbc.co.uk/news/world-europe-...</link>
<pubDate>Tue, 15 May 2012 11:44:17 GMT</pubDate>
...

</item>

P. Atzeni (heavily from Peter Wood) XML Data Management 59 / 239

Document Type Definitions

RSS Example Fragment (second item)

<item>
<title>New Greece poll due as talks fail</title>
<description>Greece is set to go to the polls again

after parties failed to agree on a government for
the debt-stricken country, says Socialist leader
Evangelos Venizelos.</description>

<link>http://www.bbc.co.uk/news/world-europe-...</link>
<pubDate>Tue, 15 May 2012 13:52:38 GMT</pubDate>
...

</item>

P. Atzeni (heavily from Peter Wood) XML Data Management 60 / 239

Document Type Definitions

RSS Example Fragment (third item)

<item>
<title>EU forces attack Somalia pirates</title>
<description>EU naval forces conduct their first raid

on pirate bases on the Somali mainland, saying they
have destroyed several boats.</description>

<link>http://www.bbc.co.uk/news/world-africa-...</link>
<pubDate>Tue, 15 May 2012 13:19:51 GMT</pubDate>
...

</item>

P. Atzeni (heavily from Peter Wood) XML Data Management 61 / 239

Document Type Definitions

Simplified DTD for RSS

<!ELEMENT rss (channel)>
<!ELEMENT channel (title, link, description,

lastBuildDate?, ttl?, item+)>
<!ELEMENT item (title, description, link?, pubDate?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT link (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT lastBuildDate (#PCDATA)>
<!ELEMENT ttl (#PCDATA)>
<!ELEMENT pubDate (#PCDATA)>

P. Atzeni (heavily from Peter Wood) XML Data Management 62 / 239

Document Type Definitions

Validation of XML Documents

Recall that an XML document is called valid if it is well-formed and
has been validated against a DTD
Validation is essentially checking that the XML document, viewed
as a tree, is a parse tree in the language specified by the DTD
We can use the W3C validator service (suggestion, pass the URI;
use two files, one for the XML document and the other for the
DTD)
Each of the following files has the same DTD specified (as on the
previous slide):

I rss-invalid.xml giving results
I rss-valid.xml giving results

P. Atzeni (heavily from Peter Wood) XML Data Management 63 / 239

http://validator.w3.org/
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/dtds/rss-invalid.xml
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.dcs.bbk.ac.uk%2F~ptw%2Fteaching%2FIWT%2Fdtds%2Frss-invalid.xml&charset=%28detect+automatically%29&doctype=Inline&ss=1&group=0
http://www.dcs.bbk.ac.uk/~ptw/teaching/IWT/dtds/rss-valid.xml
http://validator.w3.org/check?uri=http%3A%2F%2Fwww.dcs.bbk.ac.uk%2F~ptw%2Fteaching%2FIWT%2Fdtds%2Frss-valid.xml&charset=%28detect+automatically%29&doctype=Inline&ss=1&group=0

Document Type Definitions

Referencing a DTD

The DTD to be used to validate a document can be specified
I internally (as part of the document)
I externally (in another file)

done using a document type declaration
declare document to be of type given in DTD
e.g., <!DOCTYPE rss ... >

P. Atzeni (heavily from Peter Wood) XML Data Management 64 / 239

Document Type Definitions

Declaring an Internal DTD

<?xml version="1.0"?>
<!DOCTYPE rss [

<!-- all declarations for rss DTD go here -->
...
<!ELEMENT rss ... >
...

]>
<rss>

<!-- This is an instance of a document of type rss -->
...

</rss>

element rss must be defined in the DTD
name after DOCTYPE (i.e., rss) must match root element of
document

P. Atzeni (heavily from Peter Wood) XML Data Management 65 / 239

Document Type Definitions

Declaring an External DTD (1)

<?xml version="1.0"?>
<!DOCTYPE rss SYSTEM "rss.dtd">
<rss>

<!-- This is an instance of a document of type rss -->
...

</rss>

what follows SYSTEM is a URI
rss.dtd is a relative URI, assumed to be in same directory as
source document

P. Atzeni (heavily from Peter Wood) XML Data Management 66 / 239

Document Type Definitions

Declaring an External DTD (2)
<?xml version="1.0"?>
<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

"http://www.w3.org/TR/MathML2/dtd/mathml2.dtd">
<math>

<!-- This is an instance of a mathML document type -->
...

</math>

PUBLIC means what follows is a formal public identifier with 4
fields:

1 ISO for ISO standard, + for approval by other standards body, and -
for everything else

2 owner of the DTD: e.g., W3C
3 title of the DTD: e.g., DTD MathML 2.0
4 language abbreviation: e.g., EN

URI gives location of DTD

P. Atzeni (heavily from Peter Wood) XML Data Management 67 / 239

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?

The allowed sequences are:
1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

P. Atzeni (heavily from Peter Wood) XML Data Management 68 / 239

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?
The allowed sequences are:

1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

P. Atzeni (heavily from Peter Wood) XML Data Management 68 / 239

Document Type Definitions

More on RSS

The RSS 2.0 specification actually states that, for each item, at
least one of title or description must be present
How can we modify our previous DTD to specify this?
The allowed sequences are:

1 title
2 title description
3 description

So what about the following regular expression?
title | (title, description) | description

P. Atzeni (heavily from Peter Wood) XML Data Management 68 / 239

Document Type Definitions

Non-Deterministic Regular Expressions

The regular expression
title | (title, description) | description

is non-deterministic
This means that a parser must read ahead to find out which part
of the regular expression to match
e.g., given a title element in the input, which of the following
expressions should a parser try to match?

I title or
I title description

It needs to read the next element to check whether or not it is
description

P. Atzeni (heavily from Peter Wood) XML Data Management 69 / 239

Document Type Definitions

Non-Deterministic Regular Expressions

The regular expression
title | (title, description) | description

is non-deterministic
This means that a parser must read ahead to find out which part
of the regular expression to match
e.g., given a title element in the input, which of the following
expressions should a parser try to match?

I title or
I title description

It needs to read the next element to check whether or not it is
description

P. Atzeni (heavily from Peter Wood) XML Data Management 69 / 239

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic

e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

P. Atzeni (heavily from Peter Wood) XML Data Management 70 / 239

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic
e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

P. Atzeni (heavily from Peter Wood) XML Data Management 70 / 239

Document Type Definitions

Non-Deterministic vs Deterministic Regular
Expressions

Non-deterministic regular expressions are forbidden by DTDs and
XSDL
They are allowed by RelaxNG
A non-deterministic regular expression can always be rewritten to
be deterministic
e.g.,
title | (title, description) | description

can be rewritten as
(title, description?) | description

The rewriting may cause an exponential increase in size

P. Atzeni (heavily from Peter Wood) XML Data Management 70 / 239

Document Type Definitions

Attributes

Recall that attribute name-value pairs are allowed in start tags,
e.g., version="2.0" in the rss start tag
Allowed attributes for an element are defined in an attribute list
declaration: e.g., for rss and guid elements

<!ATTLIST rss
version CDATA #FIXED "2.0" >

<!ATTLIST guid
isPermaLink (true|false) "true" >

attribute definition comprises
I attribute name, e.g., version
I type, e.g., CDATA
I default, e.g., "true"

P. Atzeni (heavily from Peter Wood) XML Data Management 71 / 239

Document Type Definitions

Some Attribute Types

CDATA: any valid character data
ID: an identifier unique within the document
IDREF: a reference to a unique identifier
IDREFS: a reference to several unique identifiers (separated by
white-space)
(a|b|c), e.g.: (enumerated attribute type) possible values are one
of a, b or c
. . .

P. Atzeni (heavily from Peter Wood) XML Data Management 72 / 239

Document Type Definitions

Attribute Defaults

#IMPLIED: attribute may be omitted (optional)
#REQUIRED: attribute must be present
#FIXED "x", e.g.: attribute optional; if present, value must be x

"x", e.g.: value will be x if attribute is omitted

P. Atzeni (heavily from Peter Wood) XML Data Management 73 / 239

Document Type Definitions

Mixed Content

In rss, the content of each element comprised either only other
elements or only text
In HTML, on the other hand, paragraph elements allow text
interleaved with various in-line elements, such as em, img, b, etc.
Elements like HTML paragraphs are said to have mixed content
How do we define mixed content models in a DTD?

P. Atzeni (heavily from Peter Wood) XML Data Management 74 / 239

Document Type Definitions

Mixed Content Models

Say we want to mix text with elements em, img and b as the
allowed contents of a p element
The DTD content model would be as follows:
<!ELEMENT p (#PCDATA | em | img | b)* >

I #PCDATA must be first (in the definition)
I It must be followed by the other elements separated by |
I The subexpression must have * applied to it

These restrictions limit our ability to constrain the content model
(see XSDL later)

P. Atzeni (heavily from Peter Wood) XML Data Management 75 / 239

Document Type Definitions

Entities

An entity is a physical unit such as a character, string or file —
essentially, they are “macros”
Entities allow

I references to non-keyboard characters
I abbreviations for frequently used strings
I documents to be broken up into multiple parts

An entity declaration in a DTD associates a name with an entity,
e.g.,
<!ENTITY BBK "Birkbeck, University of London">

An entity reference, e.g., &BBK; substitutes value of entity for its
name in document
An entity must be declared before it is referenced

P. Atzeni (heavily from Peter Wood) XML Data Management 76 / 239

Document Type Definitions

General Entities

BBK is an example of a general entity
In XML, only 5 general entity declarations are built-in

I & (&), < (<), > (>), " ("), ' (’),

All other entities must be declared in a DTD
The values of internal entities are defined in the same document
as references to them
The values of external entities are defined elsewhere, e.g.,
<!ENTITY HTML-chapter SYSTEM "html.xml" >

I then &HTML-chapter; includes the contents of file html.xml at the
point of reference

I standalone="no" must be included in the XML declaration

P. Atzeni (heavily from Peter Wood) XML Data Management 77 / 239

Document Type Definitions

Parameter Entities

Parameter entities are
I used only within XML markup declarations
I declared by inserting % between ENTITY and name, e.g.,

<!ENTITY % list "OL | UL" >
<!ENTITY % heading "H1 | H2 | H3 | H4 | H5 | H6" >

I referenced using % and ; delimiters, e.g.,

<!ENTITY % block "P | %list; | %heading; | ..." >

As an example. see the HTML 4.01 DTD

P. Atzeni (heavily from Peter Wood) XML Data Management 78 / 239

http://www.w3.org/TR/html4/sgml/dtd.html

Document Type Definitions

Limitations of DTDs

There is no data typing, especially for element content
They are only marginally compatible with namespaces
We cannot use mixed content and enforce the order and number
of child elements
It is clumsy to enforce the presence of child elements without also
enforcing an order for them (i.e. no & operator from SGML)
Element names in a DTD are global (see later)
They use non-XML syntax
The XML Schema Definition Language, e.g., addresses these
limitations

P. Atzeni (heavily from Peter Wood) XML Data Management 79 / 239

http://www.w3.org/XML/Schema

XML Schema Definition Language

Chapter 4

XML Schema Definition
Language (XSDL)

P. Atzeni (heavily from Peter Wood) XML Data Management 80 / 239

XML Schema Definition Language

XML Schema

XML Schema is a W3C Recommendation
I XML Schema Part 0: Primer
I XML Schema Part 1: Structures
I XML Schema Part 2: Datatypes

describes permissible contents of XML documents
uses XML syntax
sometimes referred to as XSDL: XML Schema Definition
Language
addresses a number of limitations of DTDs

P. Atzeni (heavily from Peter Wood) XML Data Management 81 / 239

http://www.w3.org/TR/xmlschema-0
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

XML Schema Definition Language

Simple example

file greeting.xml contains:
<?xml version="1.0"?>
<greet>Hello World!</greet>

file greeting.xsd contains:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="greet" type="xsd:string"/>
</xsd:schema>

declares element with name greet to be of built-in type string

xsd is prefix for the namespace for the "schema of schemas"

P. Atzeni (heavily from Peter Wood) XML Data Management 82 / 239

XML Schema Definition Language

DTDs vs. schemas

DTD Schema
<!ELEMENT> declaration xsd:element element
<!ATTLIST> declaration xsd:attribute element
<!ENTITY> declaration (not available)

#PCDATA content xsd:string type
(not available) other data types

P. Atzeni (heavily from Peter Wood) XML Data Management 83 / 239

XML Schema Definition Language

Schemas and namespaces

schemas are designed to be compatible with namespaces
a schema can define structures for a particular namespace

I this is called the target namespace

a document using this namespace can refer to the schema for
validation
schemas can also be defined for document types which do not
use namespaces

I in this case, there is no target namespace

we will consider only the case without namespaces

P. Atzeni (heavily from Peter Wood) XML Data Management 84 / 239

XML Schema Definition Language

Schemas and namespaces

schemas are designed to be compatible with namespaces
a schema can define structures for a particular namespace

I this is called the target namespace

a document using this namespace can refer to the schema for
validation
schemas can also be defined for document types which do not
use namespaces

I in this case, there is no target namespace

we will consider only the case without namespaces

P. Atzeni (heavily from Peter Wood) XML Data Management 84 / 239

XML Schema Definition Language

Linking a schema to a document (no namespaces)

xsi:noNamespaceSchemaLocation attribute on root element
this says no target namespace is declared in the schema
xsi prefix is mapped to the URI:
http://www.w3.org/2001/XMLSchema-instance

this namespace defines global attributes that relate to schemas
and can occur in instance documents
for example:

<greet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="greeting.xsd">
Hello World!

</greet>

P. Atzeni (heavily from Peter Wood) XML Data Management 85 / 239

XML Schema Definition Language

Validating a document

a validator (found yesterday — it seems ok):
I http://www.freeformatter.com/xml-validator-xsd.html

P. Atzeni (heavily from Peter Wood) XML Data Management 86 / 239

http://www.freeformatter.com/xml-validator-xsd.html

XML Schema Definition Language

More complex document example

<cd xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="cd.xsd">

<composer>Johannes Brahms</composer>
<performance>

<composition>Piano Concerto No. 2</composition>
<soloist>Emil Gilels</soloist>
<orchestra>Berlin Philharmonic</orchestra>
<conductor>Eugen Jochum</conductor>
<recorded>1972</recorded>

</performance>
<performance>

<composition>Fantasias Op. 116</composition>
<soloist>Emil Gilels</soloist>
<recorded>1976</recorded>

</performance>
<length>PT1H13M37S</length>

</cd>

P. Atzeni (heavily from Peter Wood) XML Data Management 87 / 239

XML Schema Definition Language

Simple and complex data types

XSDL allows the definition of data types as well as declarations of
elements and attributes
simple data types can contain only text (i.e., no markup)

I e.g., values of attributes
I e.g., elements without children or attributes

complex data types can contain
I child elements (i.e., markup) or
I attributes

P. Atzeni (heavily from Peter Wood) XML Data Management 88 / 239

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="cd" type="CDType"/>

<xsd:complexType name="CDType">
<xsd:sequence>

<xsd:element name="composer" type="xsd:string"/>
<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>
<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>
...

</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 89 / 239

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="cd" type="CDType"/>
<xsd:complexType name="CDType">

<xsd:sequence>
<xsd:element name="composer" type="xsd:string"/>
<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>
<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 89 / 239

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="cd" type="CDType"/>
<xsd:complexType name="CDType">

<xsd:sequence>

<xsd:element name="composer" type="xsd:string"/>
<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>
<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

...

</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 89 / 239

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="cd" type="CDType"/>
<xsd:complexType name="CDType">

<xsd:sequence>
<xsd:element name="composer" type="xsd:string"/>
<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>
<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 89 / 239

XML Schema Definition Language

More complex schema example

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="cd" type="CDType"/>
<xsd:complexType name="CDType">

<xsd:sequence>
<xsd:element name="composer" type="xsd:string"/>
<xsd:element name="performance" type="PerfType"

maxOccurs="unbounded"/>
<xsd:element name="length" type="xsd:duration"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>
...

</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 89 / 239

XML Schema Definition Language

Main schema components

xsd:element declares an element and assigns it a type, e.g.,

<xsd:element name="composer" type="xsd:string"/>

using a built-in, simple data type, or

<xsd:element name="cd" type="CDType"/>

using a user-defined, complex data type

xsd:complexType defines a new type, e.g.,

<xsd:complexType name="CDType">
...
</xsd:complexType>

defining named types allows reuse (and may help readability)
xsd:attribute declares an attribute and assigns it a type (see
later)

P. Atzeni (heavily from Peter Wood) XML Data Management 90 / 239

XML Schema Definition Language

Main schema components

xsd:element declares an element and assigns it a type, e.g.,

<xsd:element name="composer" type="xsd:string"/>

using a built-in, simple data type, or

<xsd:element name="cd" type="CDType"/>

using a user-defined, complex data type
xsd:complexType defines a new type, e.g.,

<xsd:complexType name="CDType">
...
</xsd:complexType>

defining named types allows reuse (and may help readability)

xsd:attribute declares an attribute and assigns it a type (see
later)

P. Atzeni (heavily from Peter Wood) XML Data Management 90 / 239

XML Schema Definition Language

Main schema components

xsd:element declares an element and assigns it a type, e.g.,

<xsd:element name="composer" type="xsd:string"/>

using a built-in, simple data type, or

<xsd:element name="cd" type="CDType"/>

using a user-defined, complex data type
xsd:complexType defines a new type, e.g.,

<xsd:complexType name="CDType">
...
</xsd:complexType>

defining named types allows reuse (and may help readability)
xsd:attribute declares an attribute and assigns it a type (see
later)

P. Atzeni (heavily from Peter Wood) XML Data Management 90 / 239

XML Schema Definition Language

Structuring element declarations

xsd:sequence
I requires elements to occur in order given
I analogous to , in DTDs

xsd:choice
I allows only one of the given elements to occur
I analogous to | in DTDs

xsd:all
I all elements must occur, but in any order
I analogous to & in SGML DTDs

P. Atzeni (heavily from Peter Wood) XML Data Management 91 / 239

XML Schema Definition Language

Defining number of element occurrences

minOccurs and maxOccurs attributes control the number of
occurrences of an element, sequence or choice
minOccurs must be a non-negative integer
maxOccurs must be a non-negative integer or unbounded
default value for each of minOccurs and maxOccurs is 1

P. Atzeni (heavily from Peter Wood) XML Data Management 92 / 239

XML Schema Definition Language

Another complex type example

<xsd:complexType name="PerfType">
<xsd:sequence>

<xsd:element name="composition" type="xsd:string"/>
<xsd:element name="soloist" type="xsd:string"

minOccurs="0"/>
<xsd:sequence minOccurs="0">

<xsd:element name="orchestra" type="xsd:string"/>
<xsd:element name="conductor" type="xsd:string"/>

</xsd:sequence>
<xsd:element name="recorded" type="xsd:gYear"/>

</xsd:sequence>
</xsd:complexType>

P. Atzeni (heavily from Peter Wood) XML Data Management 93 / 239

XML Schema Definition Language

An equivalent DTD

<!ELEMENT CD (composer, (performance)+, (length)?)>
<!ELEMENT performance (composition, (soloist)?,

(orchestra, conductor)?, recorded)>
<!ELEMENT composer (#PCDATA)>
<!ELEMENT length (#PCDATA)> <!-- duration -->
<!ELEMENT composition (#PCDATA)>
<!ELEMENT soloist (#PCDATA)>
<!ELEMENT orchestra (#PCDATA)>
<!ELEMENT conductor (#PCDATA)>
<!ELEMENT recorded (#PCDATA)> <!-- gYear -->

P. Atzeni (heavily from Peter Wood) XML Data Management 94 / 239

XML Schema Definition Language

Declaring attributes

use xsd:attribute element inside an xsd:complexType

has attributes name, type, e.g.,

<xsd:attribute name="version" type="xsd:number"/>

attribute use is optional
I if omitted means attribute is optional (like #IMPLIED)
I for required attributes, say use="required" (like #REQUIRED)

for fixed attributes, say fixed="..." (like #FIXED), e.g.,

<xs:attribute name="version" type="xs:number" fixed="2.0"/>

for attributes with default value, say default="..."

for enumeration, use xsd:simpleType

attributes must be declared at the end of an xsd:complexType

P. Atzeni (heavily from Peter Wood) XML Data Management 95 / 239

XML Schema Definition Language

Locally-scoped element names

in DTDs, all element names are global
XML schema allows element types to be local to a context, e.g.,

<xsd:element name="book">
<xsd:element name="title"> ... </xsd:element>

...
</xsd:element>

<xsd:element name="employee">
<xsd:element name="title"> ... </xsd:element>

...
</xsd:element>

content models for two occurrences of title can be different

P. Atzeni (heavily from Peter Wood) XML Data Management 96 / 239

XML Schema Definition Language

Simple data types

form a type hierarchy; the root is called anyType
I all complex types
I anySimpleType

F string
F boolean, e.g., true
F anyUri, e.g., http://www.dcs.bbk.ac.uk/~ptw/home.html
F duration, e.g., P1Y2M3DT10H5M49.3S
F gYear, e.g., 1972
F float, e.g., 123E99
F decimal, e.g., 123456.789
F ...

lowest level above are the primitive data types
for a full list, see Simple Types in the Primer

P. Atzeni (heavily from Peter Wood) XML Data Management 97 / 239

http://www.dcs.bbk.ac.uk/~ptw/home.html
http://www.w3.org/TR/xmlschema-0/#simpleTypesTable

XML Schema Definition Language

Primitive date and time types

date, e.g., 1994-04-27
time, e.g., 16:50:00+01:00 or 15:50:00Z if in Co-ordinated
Universal Time (UTC)
dateTime, e.g., 1918-11-11T11:00:00.000+01:00
duration, e.g., P2Y1M3DT20H30M31.4159S
"Gregorian" calendar dates (introduced in 1582 by Pope Gregory
XIII):

I gYear, e.g., 2001
I gYearMonth, e.g., 2001-01
I gMonthDay, e.g., --12-25 (note hyphen for missing year)
I gMonth, e.g., --12-- (note hyphens for missing year and day)
I gDay, e.g., ---25 (note only 3 hyphens)

P. Atzeni (heavily from Peter Wood) XML Data Management 98 / 239

XML Schema Definition Language

Built-in derived string types

Derived from string:
normalizedString (newline, tab, carriage-return are converted to
spaces)

I token (adjacent spaces collapsed to a single space; leading and
trailing spaces removed)

F language, e.g., en
F name, e.g., my:name

Derived from name:
NCNAME ("non-colonized" name), e.g., myName

I ID
I IDREF
I ENTITY

P. Atzeni (heavily from Peter Wood) XML Data Management 99 / 239

XML Schema Definition Language

Built-in derived string types

Derived from string:
normalizedString (newline, tab, carriage-return are converted to
spaces)

I token (adjacent spaces collapsed to a single space; leading and
trailing spaces removed)

F language, e.g., en
F name, e.g., my:name

Derived from name:
NCNAME ("non-colonized" name), e.g., myName

I ID
I IDREF
I ENTITY

P. Atzeni (heavily from Peter Wood) XML Data Management 99 / 239

XML Schema Definition Language

Built-in derived numeric types

Derived from decimal:
integer (decimal with no fractional part), e.g., -123456

I nonPositiveInteger, e.g., 0, -1
F negativeInteger, e.g., -1

I nonNegativeInteger, e.g., 0, 1
F positiveInteger, e.g., 1
F . . .

I . . .

P. Atzeni (heavily from Peter Wood) XML Data Management 100 / 239

XML Schema Definition Language

User-derived simple data types

complex data types can be created "from scratch"
new simple data types must be derived from existing simple data
types

derivation can be by one of
I extension

F list : a list of values of an existing data type
F union: allows values from two or more data types

I restriction: limits the values allowed using, e.g.,
F maximum value (e.g., 100)
F minimum value (e.g., 50)
F length (e.g., of string or list)
F number of digits
F enumeration (list of values)
F pattern

above constraints are known as facets

P. Atzeni (heavily from Peter Wood) XML Data Management 101 / 239

XML Schema Definition Language

User-derived simple data types

complex data types can be created "from scratch"
new simple data types must be derived from existing simple data
types
derivation can be by one of

I extension
F list : a list of values of an existing data type
F union: allows values from two or more data types

I restriction: limits the values allowed using, e.g.,
F maximum value (e.g., 100)
F minimum value (e.g., 50)
F length (e.g., of string or list)
F number of digits
F enumeration (list of values)
F pattern

above constraints are known as facets

P. Atzeni (heavily from Peter Wood) XML Data Management 101 / 239

XML Schema Definition Language

Restriction by enumeration

<xsd:element name="MScResult">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:enumeration value="distinction"/>
<xsd:enumeration value="merit"/>
<xsd:enumeration value="pass"/>
<xsd:enumeration value="fail"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

contents of MScResult element is a restriction of the xsd:string
type
must be one of the 4 values given
e.g., <MScResult>pass</MScResult>

P. Atzeni (heavily from Peter Wood) XML Data Management 102 / 239

XML Schema Definition Language

Restriction by values

examMark can be from 0 to 100
<xsd:element name="examMark">

<xsd:simpleType>
<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:maxInclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

or, equivalently
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="100"/>

</xsd:restriction>

P. Atzeni (heavily from Peter Wood) XML Data Management 103 / 239

XML Schema Definition Language

Restriction by values

examMark can be from 0 to 100
<xsd:element name="examMark">

<xsd:simpleType>
<xsd:restriction base="xsd:nonNegativeInteger">

<xsd:maxInclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

or, equivalently
<xsd:restriction base="xsd:integer">

<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="100"/>

</xsd:restriction>

P. Atzeni (heavily from Peter Wood) XML Data Management 103 / 239

XML Schema Definition Language

Restriction by pattern

<xsd:element name="zipcode">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{5}(-\d{4})?"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

value attribute contains a regular expression
\d means any digit
() used for grouping
x{5} means exactly 5 x’s (in a row)
x? indicates zero or one x

zipcode examples: 90720-1314 and 22043

P. Atzeni (heavily from Peter Wood) XML Data Management 104 / 239

XML Schema Definition Language

Document with mixed content

We may want to mix elements and text, e.g.:

<letter>
Dear Mr <name>Smith</name>,
Your order of <quantity>1</quantity>
<product>Baby Monitor</product> was shipped
on <date>1999-05-21</date>.

</letter>

A DTD would have to contain:

<!ELEMENT letter (#PCDATA|name|quantity|product|date)*>

which cannot enforce the order of subelements

P. Atzeni (heavily from Peter Wood) XML Data Management 105 / 239

XML Schema Definition Language

Schema fragment declaring mixed content

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="letter">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:positiveInteger"/>
<xsd:element name="product" type="xsd:string"/>
<xsd:element name="date" type="xsd:date" minOccurs="0"/>
<!-- etc. -->

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

P. Atzeni (heavily from Peter Wood) XML Data Management 106 / 239

XML Schema Definition Language

Summary

XSDL provides, e.g.:
compatibility with namespaces
many built-in data types
user-defined (derived) data types
locally-scoped element declarations
more control over mixed content models

P. Atzeni (heavily from Peter Wood) XML Data Management 107 / 239

XPath

Chapter 6

XPath

P. Atzeni (heavily from Peter Wood) XML Data Management 108 / 239

XPath

Introduction

XPath is a language that lets you identify particular parts of XML
documents
XPath interprets XML documents as nodes (with content)
organised in a tree structure
XPath indicates nodes by (relative) position, type, content, and
several other criteria
Basic syntax is somewhat similar to that used for navigating file
hierarchies
XPath 1.0 (1999) and 2.0 (2010) are W3C recommendations

P. Atzeni (heavily from Peter Wood) XML Data Management 109 / 239

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/

XPath

Some Tools for XPath

Saxon (specifically Saxon-HE which implements XPath 2.0,
XQuery 1.0 and XSLT 2.0)
eXist-db (a native XML database system supporting XPath 2.0,
most of XQuery 1.0 and 3.0, and XSLT 1.0)
XPath Checker (add-on for Firefox)
XPath Expression Testbed (available online)
http://videlibri.sourceforge.net/cgi-bin/xidelcgi (also available
online)

P. Atzeni (heavily from Peter Wood) XML Data Management 110 / 239

http://www.saxonica.com/documentation/
http://exist-db.org/
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://www.whitebeam.org/library/guide/TechNotes/xpathtestbed.rhtm
http://videlibri.sourceforge.net/cgi-bin/xidelcgi

XPath

Data Model

XPath’s data model has some non-obvious features:

The tree’s root node is not the same as the document’s root
(document) element
The tree’s root node contains the entire document including the
root element (and comments and processing instructions that
appear before it)
XPath’s data model does not include everything in the document:
XML declaration and DTD are not addressable
xmlns attributes are reported as namespace nodes

P. Atzeni (heavily from Peter Wood) XML Data Management 111 / 239

XPath

Data Model (2)

There are 6 types of node:
I root
I element
I attribute
I text
I comment
I processing instruction

Element nodes have an associated set of attribute nodes
Attribute nodes are not children of element nodes
The order of child element nodes is significant
We will only consider the first 4 types of node

P. Atzeni (heavily from Peter Wood) XML Data Management 112 / 239

XPath

Example (1)

Recall our CD library example

<CD-library>
<CD number="724356690424">

<performance>
<composer>Frederic Chopin</composer>
<composition>Waltzes</composition>
<soloist>Dinu Lipatti</soloist>
<date>1950</date>

</performance>
</CD>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 113 / 239

XPath

Example (2)

...
<CD number="419160-2">

<composer>Johannes Brahms</composer>
<soloist>Emil Gilels</soloist>
<performance>

<composition>Piano Concerto No. 2</composition>
<orchestra>Berlin Philharmonic</orchestra>
<conductor>Eugen Jochum</conductor>
<date>1972</date>

</performance>
<performance>

<composition>Fantasias Op. 116</composition>
<date>1976</date>

</performance>
</CD>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 114 / 239

XPath

Example (3)

...
<CD number="449719-2">

<soloist>Martha Argerich</soloist>
<orchestra>London Symphony Orchestra</orchestra>
<conductor>Claudio Abbado</conductor>
<date>1968</date>
<performance>

<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
<performance>

<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
</CD>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 115 / 239

XPath

Example (4)

...
<CD number="430702-2">

<composer>Antonin Dvorak</composer>
<performance>

<composition>Symphony No. 9</composition>
<orchestra>Vienna Philharmonic</orchestra>
<conductor>Kirill Kondrashin</conductor>
<date>1980</date>

</performance>
<performance>

<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>

</performance>
</CD>

</CD-library>

P. Atzeni (heavily from Peter Wood) XML Data Management 116 / 239

XPath

Example — Tree Structure

L

C C C C

p c s p p s o t d p p c p p

P. Atzeni (heavily from Peter Wood) XML Data Management 117 / 239

XPath

Example — Tree Structure

L

C C C C

p c s p p s o t d p p c p p

P. Atzeni (heavily from Peter Wood) XML Data Management 117 / 239

XPath

Example — Tree Structure

L

C C C C

p c s p p s o t d p p c p p

P. Atzeni (heavily from Peter Wood) XML Data Management 117 / 239

XPath

Example — Tree Structure

L

C C C C

p c s p p s o t d p p c p p

P. Atzeni (heavily from Peter Wood) XML Data Management 117 / 239

XPath

Comments on example tree structure

attribute nodes are not shown (for number attribute)
the root node is shown as solid black
all nodes with labels (C, p, . . .) are element nodes
white nodes without labels are text nodes
not all of the tree is shown

P. Atzeni (heavily from Peter Wood) XML Data Management 118 / 239

XPath

Location Path

The most useful XPath expression is a location path:
e.g., /CD-library/CD/performance
A location path consists of at least one location step:
e.g., CD-library, CD and performance are location steps
A location step takes as input a set of nodes, also called the
context (to be defined more precisely later)
The location step expression is applied to this node set and
results in an output node set
This output node set is used as input for the next location step

P. Atzeni (heavily from Peter Wood) XML Data Management 119 / 239

XPath

Location Path (2)

There are two different kinds of location paths:
I Absolute location paths
I Relative location paths

An absolute location path
I starts with /
I is followed by a relative location path
I is evaluated at the root (context) node of a document
I e.g., /CD-library/CD/performance

A relative location path
I is a sequence of location steps
I each separated by /
I evaluated with respect to some other context nodes
I e.g., CD/performance

P. Atzeni (heavily from Peter Wood) XML Data Management 120 / 239

XPath

Location Path (2)

There are two different kinds of location paths:
I Absolute location paths
I Relative location paths

An absolute location path
I starts with /
I is followed by a relative location path
I is evaluated at the root (context) node of a document
I e.g., /CD-library/CD/performance

A relative location path
I is a sequence of location steps
I each separated by /
I evaluated with respect to some other context nodes
I e.g., CD/performance

P. Atzeni (heavily from Peter Wood) XML Data Management 120 / 239

XPath

Location Path (2)

There are two different kinds of location paths:
I Absolute location paths
I Relative location paths

An absolute location path
I starts with /
I is followed by a relative location path
I is evaluated at the root (context) node of a document
I e.g., /CD-library/CD/performance

A relative location path
I is a sequence of location steps
I each separated by /
I evaluated with respect to some other context nodes
I e.g., CD/performance

P. Atzeni (heavily from Peter Wood) XML Data Management 120 / 239

XPath

Evaluation of absolute location path

/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 121 / 239

XPath

Evaluation of absolute location path
/

CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 121 / 239

XPath

Evaluation of absolute location path
/CD-library

/CD/performance

p c s p p s o t d p p c p p

C C C C

LL

P. Atzeni (heavily from Peter Wood) XML Data Management 121 / 239

XPath

Evaluation of absolute location path
/CD-library/CD

/performance

p c s p p s o t d p p c p p

C C C C

L

C C C C

P. Atzeni (heavily from Peter Wood) XML Data Management 121 / 239

XPath

Evaluation of absolute location path
/CD-library/CD/performance

p c s p p s o t d p p c p p

C C C C

L

p p p p p p p

P. Atzeni (heavily from Peter Wood) XML Data Management 121 / 239

XPath

Location Step

In general, a location step consists of 3 parts:
I (navigation) axis
I node test
I (optional) predicate(s)

Full syntax is axis :: node test [predicate] . . . [predicate]

(We used the abbreviated syntax in previous examples)

e.g., child::CD[composer=’Johannes Brahms’]
I child is the axis
I CD is the node test
I composer=’Johannes Brahms’ is the predicate

A location step is applied to each node in the context (i.e., each
node becomes the context node)
All resulting nodes are added to the output set of this location step

P. Atzeni (heavily from Peter Wood) XML Data Management 122 / 239

XPath

Location Step

In general, a location step consists of 3 parts:
I (navigation) axis
I node test
I (optional) predicate(s)

Full syntax is axis :: node test [predicate] . . . [predicate]

(We used the abbreviated syntax in previous examples)
e.g., child::CD[composer=’Johannes Brahms’]

I child is the axis
I CD is the node test
I composer=’Johannes Brahms’ is the predicate

A location step is applied to each node in the context (i.e., each
node becomes the context node)
All resulting nodes are added to the output set of this location step

P. Atzeni (heavily from Peter Wood) XML Data Management 122 / 239

XPath

Location Step

In general, a location step consists of 3 parts:
I (navigation) axis
I node test
I (optional) predicate(s)

Full syntax is axis :: node test [predicate] . . . [predicate]

(We used the abbreviated syntax in previous examples)
e.g., child::CD[composer=’Johannes Brahms’]

I child is the axis
I CD is the node test
I composer=’Johannes Brahms’ is the predicate

A location step is applied to each node in the context (i.e., each
node becomes the context node)
All resulting nodes are added to the output set of this location step

P. Atzeni (heavily from Peter Wood) XML Data Management 122 / 239

XPath

Evaluation of predicate
/child::CD-library/child::CD

[composer=’Johannes Brahms’]

p c s p p s o t d p p c p p

C C C C

L

C C C C

P. Atzeni (heavily from Peter Wood) XML Data Management 123 / 239

XPath

Evaluation of predicate
/child::CD-library/child::CD[composer=’Johannes Brahms’]

p c s p p s o t d p p c p p

C C C C

L

C

P. Atzeni (heavily from Peter Wood) XML Data Management 123 / 239

XPath

Axes

An axis specifies what nodes, relative to the current context node,
to consider
There are 13 different axes (some can be abbreviated)

I self, abbreviated by .
I child, abbreviated by empty axis
I parent, abbreviated by ..
I descendant-or-self, abbreviated by empty location step
I descendant, ancestor, ancestor-or-self
I following, following-sibling, preceding, preceding-sibling
I attribute, abbreviated by @
I namespace

P. Atzeni (heavily from Peter Wood) XML Data Management 124 / 239

XPath

Axes

The following slides show (graphical) examples of the axes,
assuming the node in bold typeface is the context node

P. Atzeni (heavily from Peter Wood) XML Data Management 125 / 239

XPath

Self-Axis

The self-axis just contains the context node itself

P. Atzeni (heavily from Peter Wood) XML Data Management 126 / 239

XPath

Child-Axis

The child-axis contains the children (direct descendants) of the
context node

P. Atzeni (heavily from Peter Wood) XML Data Management 127 / 239

XPath

Parent-Axis

The parent-axis contains the parent (direct ancestor) of the
context node

P. Atzeni (heavily from Peter Wood) XML Data Management 128 / 239

XPath

Descendant-Axis

The descendant-axis contains all direct and indirect descendants
of the context node

P. Atzeni (heavily from Peter Wood) XML Data Management 129 / 239

XPath

Descendant-Or-Self-Axis

The descendant-or-self-axis contains all direct and indirect
descendants of the context node + the context node itself

P. Atzeni (heavily from Peter Wood) XML Data Management 130 / 239

XPath

Ancestor-Axis

The ancestor-axis contains all direct and indirect ancestors of the
context node

P. Atzeni (heavily from Peter Wood) XML Data Management 131 / 239

XPath

Ancestor-Or-Self-Axis

The ancestor-or-self-axis contains all direct and indirect ancestors
of the context node + the context node itself

P. Atzeni (heavily from Peter Wood) XML Data Management 132 / 239

XPath

Following-Axis

The following-axis contains all nodes that begin after the context
node ends

P. Atzeni (heavily from Peter Wood) XML Data Management 133 / 239

XPath

Preceding-Axis

The preceding-axis contains all nodes that end before the context
node begins

P. Atzeni (heavily from Peter Wood) XML Data Management 134 / 239

XPath

Following-Sibling-Axes

The following-sibling-axis contains all following nodes that have
the same parent as the context node

P. Atzeni (heavily from Peter Wood) XML Data Management 135 / 239

XPath

Preceding-Sibling-Axis

The preceding-sibling-axis contains all preceding nodes that have
the same parent as the context node

P. Atzeni (heavily from Peter Wood) XML Data Management 136 / 239

XPath

Partitioning

The axes self, ancestor, descendant, following and preceding
partition a document into five disjoint subtrees:

P. Atzeni (heavily from Peter Wood) XML Data Management 137 / 239

XPath

Attribute-Axis

Attributes are handled in a special way in XPath
The attribute-axis contains all the attribute nodes of the context
node
This axis is empty if the context node is not an element node
Does not contain xmlns attributes used to declare namespaces

P. Atzeni (heavily from Peter Wood) XML Data Management 138 / 239

XPath

Namespace-Axis

The namespace-axis contains all namespaces in scope of the
context node
This axis is empty if the context node is not an element node

P. Atzeni (heavily from Peter Wood) XML Data Management 139 / 239

XPath

Node Tests

Once the correct relative position of a node has been identified the
type of a node can be tested
A node test further refines the nodes selected by the location step
A double colon :: separates the axis from the node test
There are seven different kinds of node tests

name
prefix:*
node()
text()
comment()
processing-instruction()
*

P. Atzeni (heavily from Peter Wood) XML Data Management 140 / 239

XPath

Name

The name node test selects all elements with a matching name
I e.g., if our context is a set of 4 CD elements and the location step

uses the child axis, then we get element nodes with different
names

I we can use the name node test to return, e.g., only soloist
elements

Along the attribute-axis it matches all attributes with the same
name

P. Atzeni (heavily from Peter Wood) XML Data Management 141 / 239

XPath

Prefix:*

Along an element axis, all nodes whose namespace URIs are the
same as the prefix are matched
This node test is also available for attribute nodes

P. Atzeni (heavily from Peter Wood) XML Data Management 142 / 239

XPath

Comment, Text, Processing-Instruction

comment() matches all comment nodes
text() matches all text nodes
processing-instruction() matches all processing instructions

P. Atzeni (heavily from Peter Wood) XML Data Management 143 / 239

XPath

Node and *

node() selects all nodes, regardless of type:
attribute, element, text, comment, namespace, processing
instruction, and root
usually * selects all element nodes, regardless of name

I If the axis is the attribute axis, then it selects all attribute nodes
I If the axis is the namespace axis, then is selects all namespace

nodes

P. Atzeni (heavily from Peter Wood) XML Data Management 144 / 239

XPath

Key for full CD library example

Element name Abbreviation Colour
root black
library L white
cd C grey
performance p pink
composer c blue
composition green
soloist s yellow
conductor t red
orchestra o brown
date d orange

P. Atzeni (heavily from Peter Wood) XML Data Management 145 / 239

XPath

Full CD library example

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 146 / 239

XPath

Example using * and node()
/CD-library/CD/*/node()

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 147 / 239

XPath

Example showing difference between * and node()
/CD-library/CD/*/*

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 148 / 239

XPath

Example using descendant
//composer (abbreviated syntax) or
/descendant-or-self::node()/child::composer (full syntax)

p c s p p s o t d p p c p p

C C C C

L

c c

P. Atzeni (heavily from Peter Wood) XML Data Management 149 / 239

XPath

Another example using descendant
//performance/composer or
/descendant-or-self::performance/child::composer

p c s p p s o t d p p c p p

C C C C

L

P. Atzeni (heavily from Peter Wood) XML Data Management 150 / 239

XPath

Predicates

A node set can be reduced further with predicates
While each location step must have an axis and a node test
(which may be empty), a predicate is optional
A predicate contains a Boolean expression which is tested for
each node in the resulting node set
A predicate is enclosed in square brackets []

P. Atzeni (heavily from Peter Wood) XML Data Management 151 / 239

XPath

Predicates (2)

XPath supports a full complement of relational operators,
including =, >, <, >=, <=, !=
XPath also provides Boolean and and or operators to combine
expressions logically
In some cases a predicate may not be a Boolean; then XPath will
convert it to one implicitly (if that is possible):

I an empty node set is interpreted as false
I a non-empty node set is interpreted as true

P. Atzeni (heavily from Peter Wood) XML Data Management 152 / 239

XPath

Example using a predicate

//performance[composer]

p c s p p s o t d p p c p p

C C C C

L

p p p

P. Atzeni (heavily from Peter Wood) XML Data Management 153 / 239

XPath

Another example using a predicate

//CD[performance/orchestra]

p c s p p s o t d p p c p p

C C C C

L

C C

P. Atzeni (heavily from Peter Wood) XML Data Management 154 / 239

XPath

Example using multiple predicates

//performance[conductor][date]

p c s p p s o t d p p c p p

C C C C

L

p p p

P. Atzeni (heavily from Peter Wood) XML Data Management 155 / 239

XPath

Further examples with predicates

//performance[composer=’Frederic Chopin’]/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

P. Atzeni (heavily from Peter Wood) XML Data Management 156 / 239

XPath

Further examples with predicates

//performance[composer=’Frederic Chopin’]/composition
returns

1 <composition>Waltzes</composition>
2 <composition>Piano Concerto No. 1</composition>

//CD[@number="449719-2"]//composition returns
1 <composition>Piano Concerto No. 1</composition>
2 <composition>Piano Concerto No. 1</composition>

The two composition nodes have the same value, but they are
different nodes

P. Atzeni (heavily from Peter Wood) XML Data Management 156 / 239

XPath

Functions

XPath provides many functions that may be useful in predicates
Each XPath function takes as input or returns one of these four
types:

I node set
I string
I Boolean
I number

P. Atzeni (heavily from Peter Wood) XML Data Management 157 / 239

XPath

More about Context

Each location step and predicate is evaluated with respect to a
given context
A specific context is defined as (〈N1,N2, . . .Nm〉,Nc) with

I a context list 〈N1,N2, . . .Nm〉 of nodes in the tree
I a context node Nc belonging to the list

The context length m is the size of the context list
The context node position c ∈ [1,m] gives the position of the
context node in the list

P. Atzeni (heavily from Peter Wood) XML Data Management 158 / 239

XPath

More about XPath Evaluation

Each step si is interpreted with respect to a context; its result is a
node list
A step si is evaluated with respect to the context of step si−1

More precisely:
I for i = 1 (first step)

if the path is absolute, the context is the root of the XML tree;
else (relative paths) the context is defined by the environment;

I For i > 1
if N = 〈N1,N2, . . .Nm〉 is the result of step si−1,
step si is successively evaluated with respect to the context (N ,Nj),
for each j ∈ [1,m]

The result of the path expression is the node list obtained after
evaluating the last step

P. Atzeni (heavily from Peter Wood) XML Data Management 159 / 239

XPath

Node-set Functions

Node-set functions operate on or return information about node
sets
Examples:

I position(): returns a number equal to the position of the current
node in the context list

F [position()=i] can be abbreviated as [i]
I last(): returns the size (i.e. the number of nodes in) the context list
I count(set): returns the size of the argument node set
I id(idrefs): returns a node set containing all elements in the

document with any of the IDs specified by idrefs

P. Atzeni (heavily from Peter Wood) XML Data Management 160 / 239

XPath

Example about context

The expression //CD/performance[2] returns the second
performance of each CD, not the second of all performances
The result of the step CD is the list of the 4 CD nodes
The step performance[2] is evaluated once for each of 4 CD
nodes in the context

P. Atzeni (heavily from Peter Wood) XML Data Management 161 / 239

XPath

Example about context (2)

The result is the list comprising the second performance element
child of each CD:

1 <performance>
<composition>Fantasias Op. 116</composition>
<date>1976</date>

</performance>
2 <performance>

<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
3 <performance>

<composition>American Suite</composition>
<orchestra>Royal Philharmonic</orchestra>
<conductor>Antal Dorati</conductor>
<date>1984</date>

</performance>

P. Atzeni (heavily from Peter Wood) XML Data Management 162 / 239

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date
The following 4 expressions should all be equivalent

I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!

Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

P. Atzeni (heavily from Peter Wood) XML Data Management 163 / 239

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date
The following 4 expressions should all be equivalent

I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions

But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

P. Atzeni (heavily from Peter Wood) XML Data Management 163 / 239

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date
The following 4 expressions should all be equivalent

I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

P. Atzeni (heavily from Peter Wood) XML Data Management 163 / 239

XPath

Problems with XPath processors

Say we want those performance children of CD elements that are
both the second performance and have a date
The following 4 expressions should all be equivalent

I //CD/performance[2][date]
I //CD/performance[date][2]
I //CD/performance[date and position()=2]
I //CD/performance[position()=2 and date]

But different processors give different results!
Saxon and Safari, e.g., correctly give the answer as (1) and (3)
from the previous slide for all 4 expressions
But, for //CD/performance[date][2], eXist seems to return the
second of all performance elements with a date

An earlier tool returned, for each CD, the second of its
performance elements that had a date (if any)

P. Atzeni (heavily from Peter Wood) XML Data Management 163 / 239

XPath

More about the position() function

position() is a function that returns the position of the current
node in the context node set
For most axes it counts forward from the context node
For the “backward” axes it counts backwards from the context
node
The “backward” axes are: ancestor, ancestor-or-self, preceding,
and preceding-sibling

P. Atzeni (heavily from Peter Wood) XML Data Management 164 / 239

XPath

Examples using position()

To get the CD immediately before the one where the composer
was Dvorak:
//CD[composer=’Antonin Dvorak’]/preceding::CD[1]

This selects the third CD

To get the last CD (without having to know how many there are),
use //CD[position()=last()]

P. Atzeni (heavily from Peter Wood) XML Data Management 165 / 239

XPath

Examples using position()

To get the CD immediately before the one where the composer
was Dvorak:
//CD[composer=’Antonin Dvorak’]/preceding::CD[1]

This selects the third CD
To get the last CD (without having to know how many there are),
use //CD[position()=last()]

P. Atzeni (heavily from Peter Wood) XML Data Management 165 / 239

XPath

Example using a different axis

//date/following-sibling::* returns the following:
1 <performance>

<composer>Frederic Chopin</composer>
<composition>Piano Concerto No. 1</composition>

</performance>
2 <performance>

<composer>Franz Liszt</composer>
<composition>Piano Concerto No. 1</composition>

</performance>

only one date element in the document has any following siblings

P. Atzeni (heavily from Peter Wood) XML Data Management 166 / 239

XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs

//CD[performance][performance] of course does not do this:
I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

P. Atzeni (heavily from Peter Wood) XML Data Management 167 / 239

XPath

Examples using count

//CD[count(performance)=2] returns CD elements with exactly
two performance elements as children: the last 3 CDs
//CD[performance][performance] of course does not do this:

I it is equivalent to //CD[performance]
I which returns CD elements with at least one performance child

P. Atzeni (heavily from Peter Wood) XML Data Management 167 / 239

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements

What about //CD[count(//orchestra)=1]?
I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

P. Atzeni (heavily from Peter Wood) XML Data Management 168 / 239

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

P. Atzeni (heavily from Peter Wood) XML Data Management 168 / 239

XPath

More examples using count

Assume we want the CDs containing only one orchestra element
//CD[count(orchestra)=1] returns only one CD, where the
orchestra is “London Symphony Orchestra”
This is because we are counting the orchestra children of CD
elements
But orchestras are also represented below performance elements
What about //CD[count(//orchestra)=1]?

I But //orchestra is an absolute expression evaluated at the root
I So the answer to count(//orchestra)is 4, not 1

What we need is /CD[count(.//orchestra)=1], where “.”
represents the current context node

I This gives us the CDs with the “Berlin Philharmonic” and “London
Symphony Orchestra”

P. Atzeni (heavily from Peter Wood) XML Data Management 168 / 239

XPath

String Functions

String functions include basic string operations
Examples:

I string-length(): returns the length of a string
I concat(): concatenates its arguments in order from left to right and

returns the combined string
I contains(s1, s2): returns true if s2 is a substring of s1
I normalize-space(): strips all leading and trailing whitespace from

its argument

P. Atzeni (heavily from Peter Wood) XML Data Management 169 / 239

XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

P. Atzeni (heavily from Peter Wood) XML Data Management 170 / 239

XPath

Boolean Functions

Boolean functions always return a Boolean with the value true or
false:

I true(): simply returns true (makes up for the lack of Boolean
literals in XPath)

I false(): returns false
I not(): inverts its argument (i.e., true becomes false and vice versa)

Examples:
I //performance[orchestra][not(conductor)] returns

performance elements which have an orchestra child but no
conductor child

I //CD[not(.//soloist)] returns CDs containing no soloists

P. Atzeni (heavily from Peter Wood) XML Data Management 170 / 239

XPath

Boolean Functions (2)

boolean(): converts its argument to a Boolean and returns the
result

I Numbers are false if they are zero or NaN (not a number)
I Node sets are false if they are empty
I Strings are false if they have zero length

P. Atzeni (heavily from Peter Wood) XML Data Management 171 / 239

XPath

Number Functions

Number functions include a few simple numeric functions
Examples:

I sum(set): converts each node in a node set to a number and
returns the sum of these numbers

I round(), floor(), ceiling(): round numbers to integer values

P. Atzeni (heavily from Peter Wood) XML Data Management 172 / 239

XPath

Summary

XPath is used to navigate through elements and attributes in an
XML document
XPath is a major element in many W3C standards: XQuery, XSLT,
XLink, XPointer
It is also used to navigate XML trees represented in Java or
JavaScript, e.g.
So an understanding of XPath is fundamental to much advanced
XML usage

P. Atzeni (heavily from Peter Wood) XML Data Management 173 / 239

XQuery

Chapter 9

XQuery

P. Atzeni (heavily from Peter Wood) XML Data Management 174 / 239

XQuery

Motivation

Now that we have XPath, what do we need XQuery for?
XPath was designed for addressing parts of existing XML
documents
XPath cannot

I create new XML nodes
I perform joins between parts of a document (or many documents)
I re-order the output it produces
I . . .

Furthermore, XPath
I has a very simple type system
I can be hard to read and understand (due to its conciseness)

P. Atzeni (heavily from Peter Wood) XML Data Management 175 / 239

XQuery

Data Model

XQuery closely follows the XML Schema data model
The most general data type is an item
An item is either a (single) node or an atomic value

P. Atzeni (heavily from Peter Wood) XML Data Management 176 / 239

XQuery

Data Model (2)

XQuery works on sequences, which are series of items
In XQuery every value is a sequence

I There is no distinction between a single item and a sequence of
length one

Sequences can only contain items; they cannot contain other
sequences

P. Atzeni (heavily from Peter Wood) XML Data Management 177 / 239

XQuery

Document Representation

Every document is represented as a tree of nodes
Every node has a unique node identity that distinguishes it from
other nodes (independent of any ID attributes)
The first node in any document is the document node (which
contains the whole document)
The order in which the nodes occur in an XML document is called
the document order (which corresponds to the pre-order traversal
of the nodes)

P. Atzeni (heavily from Peter Wood) XML Data Management 178 / 239

XQuery

Document Representation (2)

Attributes are not considered children of an element
I They occur after their element and before its first child
I The relative order within the attributes of an element is

implementation-dependent

P. Atzeni (heavily from Peter Wood) XML Data Management 179 / 239

XQuery

Query Language

We are now going to look at the query language itself
I Basics
I Creating nodes/documents
I FLWOR expressions
I Advanced topics

P. Atzeni (heavily from Peter Wood) XML Data Management 180 / 239

XQuery

Comments

XQuery uses “smileys” to begin and end comments:
(: This is a comment :)

These are comments found in a query (to comment the query)
I Not to be confused with comments in XML documents

P. Atzeni (heavily from Peter Wood) XML Data Management 181 / 239

XQuery

Literals

XQuery supports numeric and string literals
There are three kinds of numeric literals

I Integers (e.g. 3)
I Decimals (e.g. -1.23)
I Doubles (e.g. 1.2e5)

String literals are delimited by quotation marks or apostrophes
I “a string”
I ’a string’
I ’This is a “string”’

P. Atzeni (heavily from Peter Wood) XML Data Management 182 / 239

XQuery

Input Functions

XQuery uses input functions to identify the data to be queried
There are two different input functions, each taking a single
argument

I doc()
F Returns an entire document (i.e. the document node)
F Document is identified by a Universal Resource Identifier (URI)

I collection()
F Returns any sequence of nodes that is associated with a URI
F How the sequence is identified is implementation-dependant
F For example, eXist allows a database administrator to define

collections, each containing a number of documents

P. Atzeni (heavily from Peter Wood) XML Data Management 183 / 239

XQuery

Sample Data

In order to illustrate XQuery queries, we use a sample data file
books.xml which is based on bibliography data

<bib>

<book year=’1994’>
<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<publisher>Addison Wesley</publisher>
<price>65.95</price>

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 184 / 239

XQuery

Sample Data (cont’d)

<book year=’1992’>
<title>

Advanced Programming in the UNIX environment
</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<publisher>Addison Wesley</publisher>
<price>65.95</price>

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 185 / 239

XQuery

Sample Data (cont’d)

<book year=’2000’>
<title>Data on the Web</title>
<author>

<last>Abiteboul</last> <first>Serge</first>
</author>
<author>

<last>Buneman</last> <first>Peter</first>
</author>
<author>

<last>Suciu</last> <first>Dan</first>
</author>
<publisher>Morgan Kaufmann</publisher>
<price>39.95</price>

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 186 / 239

XQuery

Sample Data (cont’d)

<book year=’1999’>
<title>

The Economics of Technology and Content for Digital TV
</title>
<editor>

<last>Gerbarg</last>
<first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic</publisher>
<price>129.95</price>

</book>

</bib>

P. Atzeni (heavily from Peter Wood) XML Data Management 187 / 239

XQuery

Input Functions (2)

doc("books.xml") returns the entire document
A run-time error is raised if the doc function is unable to locate the
document

P. Atzeni (heavily from Peter Wood) XML Data Management 188 / 239

XQuery

Input Functions (3)

XQuery uses XPath to locate nodes in XML data
An XPath expression can be appended to a doc (or collection)
function to select specific nodes
For example, doc("books.xml")//book
returns all book nodes of books.xml

P. Atzeni (heavily from Peter Wood) XML Data Management 189 / 239

XQuery

Creating Nodes

So far, XQuery does not look much more powerful than XPath
We only located nodes in XML documents
Now we take a look at how to create nodes
Note that this creates nodes in the output of a query; it does not
update the document being queried

P. Atzeni (heavily from Peter Wood) XML Data Management 190 / 239

XQuery

Creating Nodes (2)

Elements, attributes, text nodes, processing instructions, and
comment nodes can all be created using the same syntax as XML
The following element constructor creates a book element:
<book year=’1977’>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 191 / 239

XQuery

Creating Nodes (3)

Document nodes do not have an explicit syntax in XML
XQuery provides a special document node constructor
The query
document {}

creates an empty document node

P. Atzeni (heavily from Peter Wood) XML Data Management 192 / 239

XQuery

Creating Nodes (4)

Document node constructor can be combined with other
constructors to create entire documents
document {

<?xml-stylesheet type=’text/xsl’ href=’trans.xslt’?>
<!-- I love this book -->
<book year=’1977’>

<title>Harold and the Purple Crayon</title>
<author>

<last>Johnson</last>
<first>Crockett</first>

</author>
<publisher>

Harper Collins Juvenile Books
</publisher>
<price>14.95</price>

</book>
}

P. Atzeni (heavily from Peter Wood) XML Data Management 193 / 239

XQuery

Creating Nodes (5)

Constructors can be combined with other XQuery expressions to
generate content dynamically
In element constructors, curly braces { } delimit enclosed
expressions which are evaluated to create content
Enclosed expressions may occur in the content of an element or
the value of an attribute

P. Atzeni (heavily from Peter Wood) XML Data Management 194 / 239

XQuery

Creating Nodes (6)

This query creates a list of book titles from books.xml
<titles count =
’{ count(doc("books.xml")//title) }’>
{
doc("books.xml")//title

}
</titles>

The result is:
<titles count="4">

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics of ...</title>

</titles>

P. Atzeni (heavily from Peter Wood) XML Data Management 195 / 239

XQuery

Creating Nodes (6)

This query creates a list of book titles from books.xml
<titles count =
’{ count(doc("books.xml")//title) }’>
{
doc("books.xml")//title

}
</titles>

The result is:
<titles count="4">

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>Data on the Web</title>
<title>The Economics of ...</title>

</titles>

P. Atzeni (heavily from Peter Wood) XML Data Management 195 / 239

XQuery

Whitespace

Implementations may discard boundary whitespace (whitespace
between tags with no intervening non-whitespace)
This whitespace can be preserved by an boundary-space
declaration in the prolog of a query
The prolog of a query is an optional section setting up the
compile-time context for the rest of the query

P. Atzeni (heavily from Peter Wood) XML Data Management 196 / 239

XQuery

Whitespace (2)

The following query declares that all whitespace in element
constructors must be preserved (which will output the element in
exactly the same format)

declare boundary-space preserve;

<author>
<last>Stevens</last>
<first>W.</first>

</author>

Omitting this declaration (or setting the mode to strip) will give:
<author><last>Stevens</last><first>W.</first></author>

P. Atzeni (heavily from Peter Wood) XML Data Management 197 / 239

XQuery

Combining and Restructuring

The expressiveness of XQuery goes beyond just creating nodes
Information from one or more sources can be combined and
restructured to create new results
We are going to have a look at the most important expressions
and functions

P. Atzeni (heavily from Peter Wood) XML Data Management 198 / 239

XQuery

FLWOR

FLWOR expressions (pronounced “flower”) are one of the most
powerful and common expressions in XQuery
Syntactically, they show similarity to the select-from-where
statements in SQL
However, FLWOR expressions do not operate on tables, rows, and
columns

P. Atzeni (heavily from Peter Wood) XML Data Management 199 / 239

XQuery

FLWOR (2)

The name FLWOR is an acronym standing for the first letter of the
clauses that may appear

I For
I Let
I Where
I Order by
I Return

P. Atzeni (heavily from Peter Wood) XML Data Management 200 / 239

XQuery

FLWOR (3)

The acronym FLWOR roughly follows the order in which the
clauses occur
A FLWOR expression

I starts with one or more for or let clauses (in any order)
I followed by an optional where clause,
I an optional order by clause,
I and a required return clause

P. Atzeni (heavily from Peter Wood) XML Data Management 201 / 239

XQuery

For and Let Clauses

Every clause in a FLWOR expression is defined in terms of tuples
The for and let clauses produce these tuples
Therefore, every FLWOR expression must have at least one for
or let clause
We will start with artificial-looking queries to illustrate the inner
workings of for and let clauses

P. Atzeni (heavily from Peter Wood) XML Data Management 202 / 239

XQuery

For and Let Clauses (2)

The following query creates an element named tuple in its return
clause

for $i in (1, 2, 3)
return

<tuple><i> { $i } </i></tuple>

We bind the variable $i to the expression (1, 2, 3), which
constructs a sequence of integers

The above query results in:

<tuple><i> 1 </i></tuple>
<tuple><i> 2 </i></tuple>
<tuple><i> 3 </i></tuple>

(a for clause preserves order when it creates tuples)

P. Atzeni (heavily from Peter Wood) XML Data Management 203 / 239

XQuery

For and Let Clauses (2)

The following query creates an element named tuple in its return
clause

for $i in (1, 2, 3)
return

<tuple><i> { $i } </i></tuple>

We bind the variable $i to the expression (1, 2, 3), which
constructs a sequence of integers
The above query results in:

<tuple><i> 1 </i></tuple>
<tuple><i> 2 </i></tuple>
<tuple><i> 3 </i></tuple>

(a for clause preserves order when it creates tuples)

P. Atzeni (heavily from Peter Wood) XML Data Management 203 / 239

XQuery

For and Let Clauses (3)

A let clause binds a variable to the entire result of an expression
If there are no for clauses, then a single tuple is created
So the query:
let $i := (1, 2, 3)
return

<tuple><i> { $i } </i></tuple>

gives the answer:

<tuple><i> 1 2 3 </i></tuple>

P. Atzeni (heavily from Peter Wood) XML Data Management 204 / 239

XQuery

For and Let Clauses (3)

A let clause binds a variable to the entire result of an expression
If there are no for clauses, then a single tuple is created
So the query:
let $i := (1, 2, 3)
return

<tuple><i> { $i } </i></tuple>

gives the answer:

<tuple><i> 1 2 3 </i></tuple>

P. Atzeni (heavily from Peter Wood) XML Data Management 204 / 239

XQuery

For and Let Clauses (4)

Variable bindings of let clauses are added to the tuples
generated by for clauses
So the query:

for $i in (1, 2, 3)
let $j := (’a’, ’b’, ’c’)
return

<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

gives the answer:

<tuple><i>1</i><j>a b c</j></tuple>
<tuple><i>2</i><j>a b c</j></tuple>
<tuple><i>3</i><j>a b c</j></tuple>

P. Atzeni (heavily from Peter Wood) XML Data Management 205 / 239

XQuery

For and Let Clauses (4)

Variable bindings of let clauses are added to the tuples
generated by for clauses
So the query:

for $i in (1, 2, 3)
let $j := (’a’, ’b’, ’c’)
return

<tuple><i>{ $i }</i><j>{ $j }</j></tuple>

gives the answer:

<tuple><i>1</i><j>a b c</j></tuple>
<tuple><i>2</i><j>a b c</j></tuple>
<tuple><i>3</i><j>a b c</j></tuple>

P. Atzeni (heavily from Peter Wood) XML Data Management 205 / 239

XQuery

For and Let Clauses (5)

for and let clauses can be bound to any XQuery expression
Let us do a more realistic example
List the title of each book in books.xml together with the numbers
of authors:

for $b in doc("books.xml")//book
let $a := $b/author
return

<book> { $b/title,
<count> { count($a) } </count> }

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 206 / 239

XQuery

For and Let Clauses (6)

This results in:
<book>

<title>TCP/IP Illustrated</title>
<count> 1 </count>

</book>
<book>

<title>Advanced Programming ...</title>
<count> 1 </count>

</book>
<book>

<title>Data on the Web</title>
<count> 3 </count>

</book>
<book>

<title>The Economics of Technology ...</title>
<count> 0 </count>

</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 207 / 239

XQuery

Where Clauses

A where clause eliminates tuples that do not satisfy a particular
condition
A return clause is only evaluated for tuples that “survive” the
where clause
The following query returns only books whose prices are less than
50.00:

for $b in doc("books.xml")//book
where $b/price < 50.00
return $b/title

The answer is

<title>Data on the Web</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 208 / 239

XQuery

Where Clauses

A where clause eliminates tuples that do not satisfy a particular
condition
A return clause is only evaluated for tuples that “survive” the
where clause
The following query returns only books whose prices are less than
50.00:

for $b in doc("books.xml")//book
where $b/price < 50.00
return $b/title

The answer is

<title>Data on the Web</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 208 / 239

XQuery

Order By Clauses

An order by clause sorts the tuples before the return clause is
evaluated
If there is no order by clause, then the results are returned in
document order
The following example lists the titles of books in alphabetical
order:

for $t in doc("books.xml")//title
order by $t
return $t

An order spec may also specify whether to sort in ascending or
descending order (using ascending or descending)

P. Atzeni (heavily from Peter Wood) XML Data Management 209 / 239

XQuery

Return Clauses

Any XQuery expression may occur in a return clause
Element constructors are very common in return clauses
The following query represents an author’s name as a string in a
single element
for $a in doc("books.xml")//author
return

<author> { string($a/first),
string($a/last) } </author>

The result is
<author> W. Stevens </author>
<author> W. Stevens </author>
<author> Serge Abiteboul </author>
<author> Peter Buneman </author>
<author> Dan Suciu </author>

P. Atzeni (heavily from Peter Wood) XML Data Management 210 / 239

XQuery

Return Clauses

Any XQuery expression may occur in a return clause
Element constructors are very common in return clauses
The following query represents an author’s name as a string in a
single element
for $a in doc("books.xml")//author
return

<author> { string($a/first),
string($a/last) } </author>

The result is
<author> W. Stevens </author>
<author> W. Stevens </author>
<author> Serge Abiteboul </author>
<author> Peter Buneman </author>
<author> Dan Suciu </author>

P. Atzeni (heavily from Peter Wood) XML Data Management 210 / 239

XQuery

Return Clauses (2)

The following query adds another level to the hierarchy:

for $a in doc("books.xml")//author
return

<author>
<name> { $a/first, $a/last } </name>

</author>

The result is

<author>
<name>

<first>W.</first>
<last>Stevens</last>

</name>
</author>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 211 / 239

XQuery

Return Clauses (2)

The following query adds another level to the hierarchy:

for $a in doc("books.xml")//author
return

<author>
<name> { $a/first, $a/last } </name>

</author>

The result is

<author>
<name>

<first>W.</first>
<last>Stevens</last>

</name>
</author>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 211 / 239

XQuery

Formatting XQuery Output

Standard XQuery parameters can be set to
I omit the XML declaration in the output (omit-xml-declaration)
I have nested elements in the out put indented (indent)

However, it seems that new lines have to be added to the output
explicitly using the new line character obtained through the entity
reference

As an example, see the query on the next slide

P. Atzeni (heavily from Peter Wood) XML Data Management 212 / 239

XQuery

Nested Expressions
This query outputs book titles and authors, each on a new line:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:output "omit-xml-declaration=yes";
declare option saxon:output "indent=yes";

let $nl := "
"
for $b in doc("books.xml")//book
return ($b/title,

for $a in $b/author return ($a, $nl),
$nl)

Note the:
I use of the namespace declaration for the software tool Saxon
I character entity reference for the new line character
I for clause nested in the return clause
I sequences returned by using (and)

P. Atzeni (heavily from Peter Wood) XML Data Management 213 / 239

XQuery

Nested Expressions
This query outputs book titles and authors, each on a new line:

declare namespace saxon="http://saxon.sf.net/";
declare option saxon:output "omit-xml-declaration=yes";
declare option saxon:output "indent=yes";

let $nl := "
"
for $b in doc("books.xml")//book
return ($b/title,

for $a in $b/author return ($a, $nl),
$nl)

Note the:
I use of the namespace declaration for the software tool Saxon
I character entity reference for the new line character
I for clause nested in the return clause
I sequences returned by using (and)

P. Atzeni (heavily from Peter Wood) XML Data Management 213 / 239

XQuery

Operators

We have seen a few examples of operators in queries
Let’s consider operators in more detail now
XQuery has three different kinds of operators

I Arithmetic operators
I Comparison operators
I Sequence operators

P. Atzeni (heavily from Peter Wood) XML Data Management 214 / 239

XQuery

Arithmetic Operators

XQuery supports the arithmetic operators +, -, *, div, idiv, and
mod

The idiv and mod operators require integer arguments, returning
the quotient and the remainder, respectively
If an operand is a node, atomization is applied (casting the content
to an atomic type)
If an operand is an empty sequence, the result is an empty
sequence
If an operand is untyped, it is cast to a double (raising an error if
the cast fails)

P. Atzeni (heavily from Peter Wood) XML Data Management 215 / 239

XQuery

Comparison Operators

XQuery has different sets of comparison operators: value
comparisons, general comparisons and node (order) comparisons
Value comparison operators compare atomic values:

eq equals
ne not equals
lt less than
le less than or equal to
gt greater than
ge greater than or equal to

P. Atzeni (heavily from Peter Wood) XML Data Management 216 / 239

XQuery

General Comparisons

The following query raises an error

for $b in doc("books.xml")//book
where $b/author/last eq ’Stevens’
return $b/title

because we try to compare several author names to ’Stevens’
(books may have more than one author)
We need a general comparison operator for this to work
A general comparison returns true if any value in a sequence of
atomic values matches

P. Atzeni (heavily from Peter Wood) XML Data Management 217 / 239

XQuery

General Comparisons (2)

The following table shows the corresponding general comparison
operator for each value comparison operator

value comparison general comparison
eq =
ne !=
lt <
le <=
gt >
ge >=

P. Atzeni (heavily from Peter Wood) XML Data Management 218 / 239

XQuery

Node (Order) Comparisons

These operators expect each of their operands to be a single node
If not, an error is raised
The operator is tests whether two expressions return the same
node
The operators « and » test whether one node precedes («) or
succeeds (») another, in document order

P. Atzeni (heavily from Peter Wood) XML Data Management 219 / 239

XQuery

Built-in Functions

XQuery also offers a set of built-in functions and operators
We focus only on the most common ones here
SQL users will be familiar with the min(), max(), count(), sum(),
and avg() functions
Other familiar functions include

I Numeric functions like round(), floor(), and ceiling()
I String functions like concat(), string-length(), substring(),

upper-case(), lower-case()
I Cast functions for the various atomic types

P. Atzeni (heavily from Peter Wood) XML Data Management 220 / 239

XQuery

User-Defined Functions and Library Modules

When a query becomes large and complex, it becomes easier to
understand if it is split up into functions
A function is declared in the XQuery prolog
Functions can be put into library modules, which can be imported
by any query
Every module in XQuery is either a main module (which contains
a query body) or a library module (which has no query body)
We will not cover the details of user-defined functions or library
modules

P. Atzeni (heavily from Peter Wood) XML Data Management 221 / 239

XQuery

Positional Variables

The for clause supports positional variables using at

This identifies the position of a given item in the sequence
generated by an expression
The following query returns the titles of books with an attribute
that numbers the books:

for $t at $i in doc("books.xml")//title
return

<title pos=’ { $i } ’>
{ string($t) }

</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 222 / 239

XQuery

Positional Variables (2)

The output of the previous query is as follows:

<title pos=" 1 ">
TCP/IP Illustrated

</title>
<title pos=" 2 ">

Advanced Programming in ...
</title>
<title pos=" 3 ">

Data on the Web
</title>
<title pos=" 4 ">

The Economics of Technology ...
</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 223 / 239

XQuery

Combining Data Sources

A query may bind multiple variables in a for clause to combine
data from different expressions
Suppose we have a file named reviews.xml that contains book
reviews:

<reviews>
<entry>

<title>Data on the Web</title>
<price>34.95</price>
<review>

A very good discussion of
semi-structured databases ...

</review>
</entry>

...

P. Atzeni (heavily from Peter Wood) XML Data Management 224 / 239

XQuery

Combining Data Sources (2)

A FLWOR expression can bind one variable to the bibliography
data and another to the review data
In the following query we join data from the two files:

for $t in doc("books.xml")//title,
$e in doc("reviews.xml")//entry

where $t = $e/title
return

<review>
{ $t, $e/review }

</review>

P. Atzeni (heavily from Peter Wood) XML Data Management 225 / 239

XQuery

Combining Data Sources (3)

This returns the following answer:
<review>

<title>TCP/IP Illustrated</title>
<review>

One of the best books on TCP/IP.
</review>

</review>
<review>

<title>Advanced Programming in the ...</title>
<review>

A clear and detailed discussion of ...
</review>

</review>
...

P. Atzeni (heavily from Peter Wood) XML Data Management 226 / 239

XQuery

Eliminating Duplicates

Data (or intermediate query results) often contain duplicate values
Consider a query returning the last names of authors:

doc("books.xml")//author/last

This returns one of the authors twice:

<last>Stevens</last>
<last>Stevens</last>
<last>Abiteboul</last>
<last>Buneman</last>
<last>Suciu</last>

P. Atzeni (heavily from Peter Wood) XML Data Management 227 / 239

XQuery

Eliminating Duplicates

Data (or intermediate query results) often contain duplicate values
Consider a query returning the last names of authors:

doc("books.xml")//author/last

This returns one of the authors twice:

<last>Stevens</last>
<last>Stevens</last>
<last>Abiteboul</last>
<last>Buneman</last>
<last>Suciu</last>

P. Atzeni (heavily from Peter Wood) XML Data Management 227 / 239

XQuery

Eliminating Duplicates (2)

The distinct-values() function is used to remove duplicate
values
It extracts values from a sequence of nodes and creates a
sequence of unique values
Example:

distinct-values(doc("books.xml")//author/last)

which outputs

Stevens Abiteboul Buneman Suciu

P. Atzeni (heavily from Peter Wood) XML Data Management 228 / 239

XQuery

Inverting Hierarchies

XQuery can be used to do general transformations
In the books.xml file, books are sorted by title
If we want to group books by publisher, we have to “pull up” the
publisher element (i.e., invert the hierarchy of the document)
The next slide shows a query to do this

P. Atzeni (heavily from Peter Wood) XML Data Management 229 / 239

XQuery

Inverting Hierarchies — Example Query

<listings> {
for $p in

distinct-values(doc("books.xml")//publisher)
order by $p
return

<result>
<publisher>{ $p }</publisher>
{ for $b in doc("books.xml")//book

where $b/publisher = $p
order by $b/title
return $b/title

}
</result>

}
</listings>

P. Atzeni (heavily from Peter Wood) XML Data Management 230 / 239

XQuery

Inverting Hierarchies — Query Result

<listings>
<result>

<publisher>Addison-Wesley</publisher>
<title>Advanced Programming ...</title>
<title>TCP/IP Illustrated</title>

</result>
<result>

<publisher>Kluwer Academic Publishers</publisher>
<title>The Economics of ...</title>

</result>
<result>

<publisher>Morgan Kaufmann Publishers</publisher>
<title>Data on the Web</title>

</result>
</listings>

P. Atzeni (heavily from Peter Wood) XML Data Management 231 / 239

XQuery

Quantifiers

Some queries need to determine whether
I at least one item in a sequence satisfies a condition
I every item in sequence satisfies a condition

This is done using quantifiers:
I some is an existential quantifier
I every is a universal quantifier

P. Atzeni (heavily from Peter Wood) XML Data Management 232 / 239

XQuery

Quantifiers (2)

The following query shows an existential quantifier
We are looking for a book where at least one of the authors has
the last name ‘Buneman’:

for $b in doc("books.xml")//book
where some $a in $b/author

satisfies ($a/last = ’Buneman’)
return $b/title

which returns:

<title>Data on the Web</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 233 / 239

XQuery

Quantifiers (3)

The following query shows a universal quantifier
We are looking for a book where all of the authors have the last
name ‘Stevens’:

for $b in doc("books.xml")//book
where every $a in $b/author

satisfies ($a/last = ’Stevens’)
return $b/title

which returns:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming ...</title>
<title>The Economics of Technology ...</title>

P. Atzeni (heavily from Peter Wood) XML Data Management 234 / 239

XQuery

Quantifiers (4)

A universal quantifier applied to an empty sequence always yields
true (there is no item violating the condition)
An existential quantifier applied to an empty sequence always
yields false (there is no item satisfying the condition)

P. Atzeni (heavily from Peter Wood) XML Data Management 235 / 239

XQuery

Conditional Expressions

XQuery’s conditional expressions (if - then - else) are used in
the same way as in other languages
In XQuery, both the then and the else clause are required
The empty sequence () can be used to specify that a clause
should return nothing
The following query returns all authors for books with up to two
authors and “et al.” for any remaining authors

P. Atzeni (heavily from Peter Wood) XML Data Management 236 / 239

XQuery

Conditional Expressions — Example Query

for $b in doc("books.xml")//book
return

<book> { $b/title } {
for $a at $i in $b/author
where $i <= 2
return <author> { string($a/last), ", ",

string($a/first) }
</author>

}
{ if (count($b/author) > 2)

then <author> et al. </author>
else ()

}
</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 237 / 239

XQuery

Conditional Expressions — Query Result

<book>
<title>TCP/IP Illustrated</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Advanced Programming in ...</title>
<author>Stevens, W.</author>

</book>
<book>

<title>Data on the Web</title>
<author>Abiteboul, Serge</author>
<author>Buneman, Peter</author>
<author>et al. </author>

</book>
<book>

<title>The Economics of Technology ...</title>
</book>

P. Atzeni (heavily from Peter Wood) XML Data Management 238 / 239

XQuery

Summary

XQuery was designed to be compact and compositional
It is a powerful declarative language
It is well-suited to XML-processing tasks like data integration and
data transformation (including tasks for which XSLT might be
used)

But what if most of your data is stored in a relational database?

P. Atzeni (heavily from Peter Wood) XML Data Management 239 / 239

XQuery

Summary

XQuery was designed to be compact and compositional
It is a powerful declarative language
It is well-suited to XML-processing tasks like data integration and
data transformation (including tasks for which XSLT might be
used)
But what if most of your data is stored in a relational database?

P. Atzeni (heavily from Peter Wood) XML Data Management 239 / 239

	Introduction
	XML Fundamentals
	Document Type Definitions
	XML Schema Definition Language
	XPath
	XQuery

