
Rondo: A Programming Platform for Generic Model
Management

ABSTRACT
Model management aims at reducing the amount of programming
needed for the development of metadata-intensive applications.
We present a first complete prototype of a generic model-
management system, in which high-level operators are used to
manipulate models and mappings between models. We define the
key conceptual structures: models, morphisms, and selectors, and
describe their use and implementation. We specify the semantics
of the known model-management operators applied to these
structures, suggest new ones, and develop new algorithms for
implementing the individual operators. We examine the solutions
for two model-management tasks that involve manipulations of
relational schemas, XML schemas, and SQL views.

1. INTRODUCTION
A major goal of model management is to reduce the amount of
programming required for the development of metadata-intensive
applications. Such applications are deployed in the context of
database design, data integration, data translation, model-driven
website management, data warehousing, etc. They manipulate a
variety of metadata artifacts that are called models, such as
relational and XML schemas, interface definitions, mediator
specifications, or website layouts, and mappings between models,
such as SQL views or XSLT transformations. Many of today’s
model-management tasks are still solved manually, because an
automated approach requires too much implementation effort due
to the lack of a common programming platform.

Database and software engineering researchers have been
studying the individual aspects of model management in depth for
decades. However, factoring out the common aspects of model
management has only recently become a subject of active
research [7]. A major goal of this recent research has been to
develop a set of algebraic operators, such as Compose, Match and
Merge, that generalize the transformation operations utilized
across various metadata applications. These operators are applied
to models and mappings as a whole, rather than to their individual
elements, and simplify the programming of metadata applications
by raising the level of abstraction. Moreover, the operators are
generic in the sense that they can be utilized for different kinds of
models and scenarios. Although many model-management tasks
can be automated, there remain critical places where human
decision-making is needed, e.g., to address semantic

heterogeneity. Thus, some of the operations are inherently
semiautomatic and require feedback of a human engineer before,
during, or after operator execution.

Our goal is to investigate whether metadata management can
be done in a generic fashion, the key question raised in [7].
Detailed walkthroughs of various model-management problems
have been examined to address this question (e.g., in [5,9]). Our
contribution is that we succeeded in making such abstract
programs executable. In this paper, we present a prototype of a
programming platform for model management and describe the
conceptual structures and operators that we developed. Primarily,
our prototype supports the developers of model-management
solutions, by providing a high-level programming environment.
However, it also addresses the needs of the engineers who deploy
these solutions by offering a graphical user interface (GUI) to
receive their feedback in semiautomatic operations.

In designing and implementing our prototype, we consciously
focus on simplicity. We investigate how far we can go with a
comparatively weak representation of models and mappings that
can be used to solve an interesting class of problems. We also
determine how much code is needed for the most basic, but still
useful, model management system.
The key contributions of this paper are as follows:
• We introduce conceptual structures used for representing

models and mappings. We explore a simple class of mappings
between models that we call morphisms and suggest a new
structure called selector.

• We define the semantics of the key model-management
operators on the conceptual structures that we introduce, and
suggest several new generic operators.

• We present new algorithms used for implementing the
operators Extract and Merge.

• We examine the solutions for two important model-
management tasks that involve manipulations of relational
schemas, XML schemas, and SQL views.

• Finally, we describe the first complete prototype
implementation of model management and demonstrate how it
can be extended to embrace new kinds of models.

This paper is organized as follows. In Section 2 we walk through
a model-management scenario to motivate the conceptual struc-
tures and operator definitions that we present in Sections 3 and 4.
Section 5 is devoted to the implementation and the algorithms that
we developed. Section 6 describes our prototype in more detail.
Related work is reviewed in Section 7. We conclude in Section 8.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06…$5.00.

Philip A. Bernstein
Microsoft Research, Redmond, WA

philbe@microsoft.com

Sergey Melnik
University of Leipzig, Germany
melnik@db.stanford.edu

Erhard Rahm
University of Leipzig, Germany

rahm@informatik.uni-leipzig.de

Proc. ACM SIGMOD 2003, San Diego CA, June 2002 (to appear)

2. MOTIVATING SCENARIO
To motivate the operator definitions that we give in this paper, we
will use a scenario that is illustrated in Figure 1 and exemplifies
one of the patterns that can be found in many metadata-intensive
applications. Consider an e-commerce company that needs to
supply its purchase order data to a business partner. The data is
stored in a relational database according to a relational schema s1.
For the purpose of data exchange, both companies agree to use a
common XML schema d1. (The correspondences between the
elements of schema s1 and d1 are depicted as light gray lines.)
Schema d1 differs from s1 in terms of structure and naming.

The relational schema undergoes periodic changes due to the
dynamic nature of the business. Assume that s2 is a new version
of s1, in which columns “Brand” and “Discount” have been
deleted, columns “ShipDate”, “FreightCharge”, and “Rebate”
have been added, and column “UnitPrice” has been renamed to
“Price”. These changes (highlighted in bold in Figure 1) need to
be propagated to the XML schema, so that d1 becomes d2.

The change propagation described above can be done as
follows. First, the changes introduced by s2 need to be detected,
i.e., s1 and s2 need to be matched. Then, the d1 images of the
elements deleted in s1 need to be removed from d1. Finally, the
XML schema counterparts of the added and renamed columns in
s1 need to be merged into d1 to obtain d2. During these steps,
intervention of a human engineer may be required, for example,
to decide whether the new column “Rebate” should indeed be
added to the exchange schema or is not part of the exchanged data
and should be omitted. Still, a major portion of the work is
mechanical and can be automated.

Notice that the procedure sketched above could be applied in
the reverse case, when the XML schema d1 is the one that has
been modified and the changes are to be propagated back to the
relational schema s1. Another instance of the same pattern is
round-tripping the modifications from a relational schema like s1
to an existing conceptual schema of the data, which may be
expressed as an ER diagram. A key idea of generic model

management is to solve such tasks at a high level of abstraction
using a concise generic script.

Below we present an actual model-management script that
implements the above solution for our change propagation
scenario, and is directly executable by our prototype. We will use
the script to introduce the major model-management operators,
which we define in the subsequent sections. To explain the
individual steps of the script, we use a schematic representation of
the solution shown in Figure 2. The rectangles labeled s1, s2, d1,
and d2 represent the four schemas of Figure 1. The arcs between
the rectangles denote the mappings between the schemas. For ex-
ample, the correspondences between schemas s1 and d1 in
Figure 1 are shown as a single arc from rectangle s1 to d1 in
Figure 2.

At the bottom of Figure 2, there is a schema c, which does not
appear in Figure 1. To see why it is needed, recall that s1 and d1
are expressed using two different schema languages. The new
schema elements added to s1 by way of s2 have no counterparts
in schema d1. That is, the new elements need to be converted
from the source schema language to the target language. For
example, the attribute “ShipDate” added to relation “ORDERS”
needs to be converted to a subelement of the complex type
“PurchaseOrder” in the XML schema. This step is often referred
to as schema translation in the literature. In our solution, we
assume that such a translation tool is available as an operator, say
SQL2XSD, which takes as input a relational schema and produces
as output an XML schema and a mapping between the original
and converted schema elements. Thus, the schema c and the
mapping s2_c between s2 and c shown in Figure 2 are obtained as
〈c, s2_c〉 = SQL2XSD(s2). Note that schema c is not yet the
desired result d2; for example, c may contain an unneeded
complex type O-DETAILS, and may differ from d1 structurally.

Now, our solution for the change propagation scenario can be
expressed as the following script:
operator PropagateChanges(s1, d1, s1_d1, s2, c, s2_c)
 1. s1_s2 = Match(s1, s2);
 2. 〈d1′, d1′_d1〉 =
 Delete(d1, Traverse(All(s1) − Domain(s1_s2), s1_d1));
 3. 〈c′, c′_c〉 = Extract(c, Traverse(All(s2) − Range(s1_s2), s2_c));
 4. c′_d1′ =
 c′_c ∗ Invert(s2_c) ∗ Invert(s1_s2) ∗ s1_d1 ∗ Invert(d1′_d1);
 5. 〈d2, c′_d2, d1′_d2〉 = Merge(c′, d1′, c′_d1′);
 6. s2_d2 = s2_c ∗ Invert(c′_c) ∗ c′_d2 +
 Invert(s1_s2) ∗ s1_d1 ∗ Invert(d1′_d1) ∗ d1′_d2;
 7. return 〈d2, s2_d2〉;

The script defines a generic operator PropagateChanges, which
takes six parameters as input (including the converted schema c),
and produces two return values 〈d2, s2_d2〉 as output. Below, we
explain the script line by line.

c′_c

s1_d1

s2_c

d1′_d2
c′_

d2

s2_d2

c′_d1′

s1_s2

d1′ = d1 w/o deleted
c = converted from s2
c′ = addeds1

s2

d1
d1′

c
c′

d2

c′
d1′

d1′_d1

Figure 2: Schematic representation of a solution for

change propagation scenario of Figure 1

OID

OrderDate
Employee
Customer
PONum
SalesTaxRate

ORDERS

DID

Quantity
UnitPrice
Discount

O-DETAILS

PID

PName
Brand

PRODUCTS

OID
PID

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Brand
Quantity
UnitPrice
Discount

Product

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Brand
Quantity
UnitPrice
Discount

Product

OID

OrderDate
Employee
Customer
PONum
SalesTaxRate
ShipDate
FreightCharge
Rebate

ORDERS

DID

Quantity
Price

O-DETAILS

PID

PName

PRODUCTS

OID
PID

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Quantity
Price

Product

ShipDate
FreightCharge
Rebate

OrderID
OrderDate
Employee
Customer
PONum
SalesTaxRate

PurchaseOrder

ProductID
ProductName
Quantity
Price

Product

ShipDate
FreightCharge
Rebate

s1

s2

d1

d2

re
la

tio
na

l s
ch

em
a

XM
L

sc
he

m
a

re
la

tio
na

l s
ch

em
a

XM
L

sc
he

m
a

Figure 1: Scenario illustrating propagation of changes

from a relational to an XML schema

1. In line 1, schemas s1 and s2 are “matched” to detect the
changes. The result is a mapping s1_s2 shown schematically
in Figure 2. Speaking informally, the mapping connects the
equivalent elements of s1 and s2. The new elements of s2
(e.g., “ShipDate”) and deleted elements of s1 (e.g., “Brand”)
have no matching counterparts, so they remain unconnected.

2. Line 2 illustrates how operators can be combined. First, the
deleted elements of s1 are identified using the expression
All(s1) − Domain(s1_s2), i.e., all elements of s1 without the
matched (and thus not deleted) elements. Then, these elements
are used to “traverse” the mapping s1_d1. For example, the
deleted relational attribute “Brand” traverses s1_d1 and yields
the XML schema element “Brand” of d1. Finally, these d1
images of the deleted elements are removed from d1 using the
operator Delete. The result is a new schema d1′ (a
“subschema” of d1), and a mapping d1′_d1, which describes
how d1′ relates to d1.

3. Line 3 is quite similar to line 2. The new elements of s2, i.e.,
those missing from the range of s1_s2, traverse s2_c into the
converted model c. For example, the image of relational
attribute “ShipDate” is an XML schema element “ShipDate”
obtained by conversion. A “subschema” c′ containing the
images of the new elements is then extracted from c using the
operator Extract, which also returns the mapping c′_c. In
addition to the elements obtained by traversal like “ShipDate”,
c′ contains extra elements of c, such as the complex type that
encloses “ShipDate”, to make c′ a well-formed XML schema.
Such extra elements are called “support” elements [5].

4. At this point, d1′ is a subschema of d1 without the deleted
elements, and c′ contains the added elements and their support
elements. Schemas d1′ and c′ need to be merged to obtain the
final result d2 (line 5). As we explain in Section 4.5, the
merging of two schemas is driven by a mapping that tells how
elements of the two schemas, specifically the support
elements of c′, correspond to each other. The mapping
between d1′ and c′ is shown in Figure 2 as an arc connecting
the two enclosed rectangles. This mapping can be obtained by
“composing” the existing mappings between c′, c, s1, s2, d1,
and d1′ as c′_c ∗ Invert(s2_c) ∗ Invert(s1_s2) ∗ s1_d1 ∗
Invert(d1′_d1). To get the composition right, mappings s2_c,
s1_s2, and d1′_d1 need to be “inverted”, i.e., the domains and
ranges of the mappings need to be swapped.

5. The final result of change propagation, schema d2, is
computed by the Merge operator. Additionally, the operator
returns two mappings, c′_d2 and d1′_d2, which describe how
d2 relates to the inputs to Merge, c′ and d1′.

6. As a last step, we compute s2_d2, a new version of the
mapping s1_d1 given as part of the input. We need s2_d2 to
ensure that our change propagation script can be re-applied if
the source schema evolves again. Since d2 is obtained by
merging d1′ and c′, the mapping s2_d2 is essentially a union
of two mappings, the one between s2 and the d1′-portion of
d2, and the one between the s2 and c′-portion of d2. These
two mappings can be obtained by composition as s2_c ∗
Invert(c′_c) ∗ c′_d2 and Invert(s1_s2) ∗ s1_d1 ∗
Invert(d1′_d1) ∗ d1′_d2, respectively. Their union is denoted
using the plus sign (+).

Notice that the above script is not limited to propagating changes
from relational schemas to XML schemas. In fact, the reverse

propagation problem can be solved using the same script by
assigning the original and modified XML schemas to s1 and s2,
and the relational schema to d1. Of course, the input parameters c
and s2_c need to be obtained using a different converter, e.g., as
〈c, s2_c〉 = XSD2SQL(s2).

In our implementation, every intermediate result of a script
such as the one above can be examined and adjusted by a human
engineer using a graphical tool. Specifically, the result of Match
in line 1 can be post-processed to remove incorrectly suggested
matches and add missing ones. Similarly, the merging in line 5 is
in general a semiautomatic process, which requires human
feedback. Finally, by adjusting the intermediate results of
operator compositions in lines 2 and 3 the engineer can decide
which additions and deletions should not be propagated.

In the above discussion, we introduced several operators
informally. To make these operators effective and usable by
developers, their semantics needs to be specified precisely. Our
goal is to make the semantics as “generic” as possible, so the
operators can serve a broad range of model-management tasks. In
the next two sections we describe this semantics, first by defining
the structures on which they operate, and then by describing the
operators themselves.

3. CONCEPTUAL STRUCTURES
Model-management applications deal with a wide range of
metadata artifacts, which include not only schemas, such as the
relational and XML schemas in our motivating scenario, but also
view definitions, interface specifications, etc. We represent the
formal descriptions, or models, of these artifacts as directed
labeled graphs. This graph representation is quite flexible and can
accommodate virtually any type of models.

We also introduce two additional structures, called morphisms
and selectors. Morphisms are binary relationships that establish
n:m correspondences between the elements of two models (i.e.,
nodes of two graphs). For example, in our motivating scenario
morphisms are used for keeping track of the XML counterparts of
the relational schema elements. Two morphisms, one between s1
and d1 and another between s2 and d2, are shown in Figure 1
using light gray lines. The third conceptual structure, selector, is a
set of elements used in models. A major benefit of using selectors
is that various operations, in particular the set operations, which
would typically produce non-well-formed models if used directly,
can be applied to selectors safely.

In the following subsections, we define models, morphisms,
and selectors as abstract graph and set structures. We also
describe them in an equivalent representation as relations. The
latter will make it easier to define the semantics of the operators,
which follow later.
3.1 Models
We represent models as directed labeled graphs. The nodes of
such graphs denote model elements, such as relations and
attributes in relational schemas, type definitions in XML schemas,
clauses of SQL statements, etc. We assume that each element is
uniquely identified by an object identifier (OID). A directed
labeled graph is a set of edges 〈s, p, o〉 where s is the source node,
p is the edge label, and o is the target node1. For a given source s
and label p, the target nodes may be sequentially ordered. Their
order can be captured by an ordinal property on edges. Thus,

1 The notation (s, p, o) stands for (subject, predicate, object).

“PName”namea3
PrimaryKeytypea4

“PRODUCTS”namea1
2a3columna1

intSQLtypea2
“PID”namea2

Columntypea3
varcharSQLTypea3

Columntypea2

a2keyCola4

a2
Table

O

1columna1
type
P NS

a1

“PName”namea3
PrimaryKeytypea4

“PRODUCTS”namea1
2a3columna1

intSQLtypea2
“PID”namea2

Columntypea3
varcharSQLTypea3

Columntypea2

a2keyCola4

a2
Table

O

1columna1
type
P NS

a1

a1

Table

a2

a3

Column

varchar

int

PID

PNamePRODUCTS

type type

type

column:1

column:2name

name

name

SQLtype

SQLtype

CREATE TABLE PRODUCTS (
PID int PRIMARY KEY,
PName varchar

)

a4 PrimaryKeytype
keyCol

Figure 3: Sample model shown as graph and 4-tuples

conceptually a graph can be viewed as a relation M with four
attributes, M(S: OID, P: OID, O: OID ∪ Literal, N: integer),
where N is an optional attribute used for ordering and S, P, O
form a unique key. The node identifiers and edge labels are drawn
from the set of OIDs, which can be implemented as integers,
pointers, URIs, etc. The literals include strings, integers, floats,
and other data types. The type of attribute O is defined as a union
type of OIDs and literals.

Consider the example in Figure 3. It illustrates how a relational
table PRODUCTS defined in SQL DDL (top left) is represented
as a graph (bottom left) and as a corresponding set of 4-tuples (on
the right). The ovals in the graph denote OIDs, and rectangles
denote literals. Nodes a1, a2, a3 represent the table PRODUCTS
and its columns PID and PName, respectively. Node a4 represents
the primary key constraint on PID. For readability, the identifiers
such as Table or Column are spelled out as names rather than
opaque IDs.

The order of the columns identified by the nodes a2 and a3 is
determined by the values 1 and 2 of attribute N (fourth attribute of
the table with 4-tuples). In general, the node ordering with respect
to a given {src node} and {edge label} is determined by the SQL
query: SELECT M.O FROM M WHERE M.S={src node} AND
M.P={edge label} ORDER BY M.N. In the example, we have
M.S=a1 AND M.P=column.

A formal specification of the rules for encoding a model as a
graph is called a meta-model. A model is well-formed if it con-
forms to its meta-model. For example, Figure 3 illustrates a graph
encoding of relational schemas that uses specific edge labels, such
as SQLtype or name, and auxiliary nodes, such as Table, varchar,
or PrimaryKey. If we know the relational meta-model, we can tell
whether or not a given graph represents a well-formed relational
schema. For example, if we know that each column must have an
SQL type, then removing the edge 〈a2, SQLtype, int〉 from the
graph in Figure 3 yields a model that is not well-formed. For the
purposes of this paper, it is unimportant how a meta-model is
represented and how one checks that a model conforms to its
meta-model. The details of the graph representation of models
remain opaque to the developer of model management applica-
tions. Of course, the representation is visible to developers of
model management operators. So, a developer must be aware of
the representation to implement a custom, non-generic operator,
e.g., an operator to normalize relational schemas.

3.2 Morphisms
Many metadata-intensive applications, such as data integration
and warehousing tools, use a graphical metaphor like the one
shown in Figure 1 for representing schema mappings. These
mappings are shown to the engineer as sets of lines connecting the

elements of two schemas. We call such mappings (schema)
morphisms. Thus, a morphism is a binary relation over two
(possibly overlapping) sets of OIDs, i.e., a set of pairs 〈l, r〉 drawn
from OID×OID.

Clearly, a morphism is a weaker representation of a
transformation between two models than an SQL view or the
mapping languages and expressions suggested in [3,5,14,19,20].
In particular, a morphism carries no semantics about the
transformation of instances that conform to the models (e.g., no
SQL WHERE-clause). Still, we have found that many mappings
can be expressed in this way such as in our change propagation
scenario of Section 2. The morphisms have several other
advantages. Given our graph representation of models, a
morphism can represent a mapping between different kinds of
models, e.g., between a relational and XML schema. A morphism
can always be inverted and composed. (In contrast, an SQL view
cannot be composed with an XSLT transformation in an obvious
way.) And since morphisms can be expressed as binary relations,
they can be implemented and manipulated easily.

Consider the example in Figure 4. The top part of the figure
shows the relational schema of Figure 3 and an XML schema. A
morphism between the two schemas is depicted graphically as
four arcs that connect the elements of the schemas. The bottom
part of the figure shows the same morphism represented as a
relation. The node identifiers a1, a2, a3 correspond to those of
Figure 3. The nodes b2, b3, b4, b5 denote respectively the
complex type “Product” and the elements “ProductID”,
“ProductName”, and “ProductType” defined in the XML schema
(its graph representation is illustrated in Figure 5). Notice that a
node can be connected to multiple nodes; e.g. a3 is connected to
b4 and b5. Moreover, various kinds of model elements, such as
relations or attributes, can participate in a morphism.

In an implementation, it may be convenient to annotate the
pairs 〈l, r〉 with additional properties. For example, most
implementations of the Match operator compute similarity values
between the elements of two models. These values can be
returned conveniently using a morphism in which each pair has an
additional similarity property. Hence, although we define a
morphism conceptually as a binary relation H(L: OID, R: OID), it
may contain additional attributes, as required by the individual
operators. Typically, the L elements originate from one model,
and the R elements from another.

3.3 Selectors
A selector is a set of node identifiers, which may originate from a
single or multiple models. It can be represented as a relation with
a single attribute, S(V: OID), where V is a unique key. Figure 6
shows an example of a selector that contains all OIDs used in the
model depicted in Figure 3.

<schema xmlns=“…”>
<complexType name=“Product”>
<element name=“ProductID” type=“xs:int”/>
<element name=“ProductName” type=“xs:string”/>
<element name=“ProductType” type=“xs:string”/>

</complexType>
</schema>

CREATE TABLE PRODUCTS (
PID int,
PName varchar

)

b5a3
b4a3
b3a2
b2
RL

a1

b5a3
b4a3
b3a2
b2
RL

a1

Figure 4: Morphism between relational and XML schema

4. OPERATORS
In our motivating scenario, we introduced high-level operators
whose inputs and outputs are models, morphisms and selectors,
such as Match, Delete, Traverse, Extract, and Invert. Such
operators raise the level of abstraction of manipulating metadata
structures by considering whole models and morphisms at a time,
as opposed to node-at-a-time primitives. In this section, we define
the precise semantics of these operators on the structures defined
in Section 3. Their implementation is covered in Section 5.

We start our presentation of operator semantics in Section 4.1
with what we call primitive operators. These are generic operators
whose semantics can be defined formally using the relational
algebraic manipulation of the relational representations of Section
3. For notational convenience, we express this manipulation in
SQL. After that, we introduce the other more powerful operators:
such as Extract, Delete, Match, and Merge, whose semantics is
more subtle and still a subject of ongoing research.

As we will see, some operators, such as Subgraph or Copy, are
agnostic about the kind of models passed as input, whereas the
semantics of others depends on the underlying meta-model. The
GUI operators EditMap and EditSelector allow arbitrary
transformations of morphisms and selectors by an engineer. Thus,
their semantics cannot be constrained any further.

4.1 Primitive operators
Table 1 lists the definitions of seven primitive operators. The left
column contains the operator definitions expressed in SQL.
Variables m, s, and map hold a model, a selector, and a morphism,
respectively. The right column illustrates the application of the
operators using simple examples. All primitive operators defined
in the table are standard set-theoretic operators. Notice that their
definitions are expressed declaratively, i.e., the implementation of
these operators, or functional combinations thereof, can be
optimized using standard query optimization techniques.

The operator Domain extracts the “left” elements from a
morphism and returns a selector that holds the result. The operator
RestrictDomain restricts a morphism to a smaller element domain,
which is specified by the selector passed as a second parameter of
the operator. The Invert operator swaps the left and right elements
of a morphism. The Compose (∗) operator is defined as the
natural join of two morphisms, yielding another morphism. The
TransitiveClosure operator on morphisms is specified using a
recursive SQL definition. The Id operator creates an identity
morphism over a given selector.

The operator Subgraph(m, s) extracts from model m a subgraph
induced by the nodes referenced in s. The literals attached to the
nodes in s are also extracted from m. In the example of Table 1,
the literal “PID” is not contained in the input selector s, but the
edge 〈a2, name, “PID”〉 is nevertheless returned as part of the
result. The extracted subgraph may not be a well-formed model.

That is, it may not be fully connected and may not conform to its
meta-model.

The set operators Union (+), Difference (−), and Intersection
(∩) are another three important primitive operators. We define
these on models, morphisms, and selectors by the corresponding
set operations on their representation as relations. For example,
Union(x, y) := SELECT * FROM x UNION SELECT * FROM y

Note that applying the set operations to well-formed models
may produce a model that is not well-formed.

Table 1: Definitions of primitive operators
Definition Example
Domain(map) := SELECT
DISTINCT map.L AS V FROM
map

Domain() = b2a2

b1a1
b2a2
b1a1

a2
a1
a2
a1

RestrictDomain(map, s) :=
SELECT * FROM map WHERE
map.L IN s

RestrictDomain(,) = b1a1 b1a1a1a1b2a2
b1a1
b2a2
b1a1

Invert(map) := SELECT map.R
AS L, map.L AS R FROM map

Invert() = b2a2
b1a1
b2a2
b1a1

a2b2
a1b1
a2b2
a1b1

Compose(map1, map2) :=
SELECT DISTINCT map1.L,
map2.R FROM map1, map2
WHERE map1.R = map2.L

Compose(,) = c1a1 c1a1c1b1 c1b1b2a2
b1a1
b2a2
b1a1

TransitiveClosure(map) := WITH
RECURSIVE TC(L, R) AS (map
UNION SELECT DISTINCT TC.L,
map.R FROM TC, map WHERE
TC.R = map.L) SELECT * FROM
TC

 TransitiveClosure () = cb
ba
cb
ba

cb
ca

ba
cb
ca

ba

Id(s) := SELECT s.V AS L, s.V
AS R FROM s

Id() = a2
a1
a2
a1

a2a2
a1a1
a2a2
a1a1

Subgraph(m, s) := SELECT *
FROM m WHERE m.S IN s AND
(m.O IN s OR isLiteral(m.O))

a2

Column
int

PID

type

name

SQLtypeSubgraph(M,) =
Column

int

a2
Column

int

a2

where M = model of Figure 3

The last two primitive operators are All and Copy. The
operator All(m) returns a selector that contains only those nodes
of m that denote the model elements of the model’s meta-model,
such as tables or columns in the relational meta-model. For
example, for the model of Figure 3 the operator All yields the
selector {a1, a2, a3, a4} and filters out all auxiliary nodes, such
as Table or PrimaryKey, that are used in the graph encoding.

Frequently, it is important to ensure that a given node identifier
is used in exactly one model. Furthermore, unique node IDs make
it possible to refer to model elements across model boundaries.
For these reasons, we use the operator Copy to create a copy of a
model m in which the selected node IDs are replaced by new,
uniquely created IDs. In the following definition of Copy, the
function uniqueOID() generates a unique OID on each call, and
the function ifNULL(x, y, z) returns y whenever x is a NULL
value, z otherwise. If s=All(m), the output morphism m′_m is a
bijection between All(m′) and All(m).
Copy(m, s) :=
 m′_m = SELECT uniqueOID(), s.V FROM s;
 m′ = SELECT ifNULL(T1.L, m.S, T1.L), m.P,
 ifNULL(T2.L, m.O, T2.L)
 FROM m, m′_m as T1, m′_m as T2
 LEFT OUTER JOIN ON m.S=T1.R, m.O=T2.R;
return 〈m′, m′_m〉;

Column

a3

PrimaryKey

Table

int
varchar

a4

a2

V
a1

Column

a3

PrimaryKey

Table

int
varchar

a4

a2

V
a1

Figure 6: Example

of a selector

type
name

name

name

type
type

tag

b1

b4

b2

child:3

child:1
schema tag

complexType

element
b3

b5

child:1

child:2

Productname

tag
tagtag

ProductID

ProductName

ProductType

int

string

Figure 5: Graph representation
of XML schema in Figure 4

4.2 Derived operators
The derived operators are functional combinations of other
operators. For example, consider the definitions shown below.
operator Range(map)
 return Domain(Invert(map));

operator RestrictRange(map, selector)
 return Invert(RestrictDomain(Invert(map), selector));

operator Traverse(selector, map)
 return Range(RestrictDomain(map, selector));

operator Restrict(map, m1, m2)
 return RestrictRange(RestrictDomain(map, All(m1)), All(m2));

The Range of a morphism is obtained as the domain of an
inverted morphism, by combining the primitive operators Domain
and Invert of Table 1. Similarly, RestrictRange is specified in
terms of the operator RestrictDomain by first inverting the input
morphism, then applying RestrictDomain, and finally inverting
the resulting morphism once again.

The third operator, Traverse, was used in our motivating
scenario for locating the d1 images of the elements deleted from
the relational schema s1. To “traverse” the morphism, it is first
domain-restricted by the selector, and the range of the restricted
morphism is returned as output.

The last operator, Restrict, confines the domain and range of a
morphism to the elements of two models m1 and m2. Notice that
the definitions of the derived operators above are expressed
declaratively, allowing the implementations to be optimized.

4.3 Extract and Delete
Extracting and deleting portions of models are operations that are
heavily deployed in metadata applications. To perform these
operations, we propose the generic operators Extract and Delete.
The operator Extract is applied as follows: 〈m′, m′_m〉 =
Extract(m, s). The inputs are a well-formed model m and a
selector s that identifies the set of nodes to be extracted. The
output model m′ satisfies the following properties: (i) m′ contains
all selected nodes, (ii) m′ is a well-formed model, (iii) m′ is an
equally or less expressive model than m, i.e., m can represent all
information of m′, and (iv) m′ is a “minimal” model that satisfies
(i)–(iii). Condition (ii) may require that unselected “support”
elements be included in m′. Condition (iii) can be characterized
formally in terms of dominance and information capacity as
suggested in [15,19]. The morphism m′_m is an injective function
from All(m′) to All(m), i.e., each model element of m′ has at most
one counterpart in m.

In general, a model may contain implicit information, such as
transitive relationships between model elements. In such cases,
the result of Extract may need to make such information explicit.
For example, consider a class diagram with three classes A, B, C,
and two explicit subclass definitions: A is a subclass of B, and B
is a subclass of C. Due to condition (iii), Extract(m, {A, C})
should return a class diagram in which A is defined as a subclass
of C. This example illustrates that extraction is a rich operation,
whose semantics and implementation may be non-trivial.

Conceptually, the semantics of the operator Extract(m, s) can
be realized using the following algorithm:
1. Create a “closure” of m, i.e., a model m′ in which all implicit

information of m is represented explicitly.
2. Assign s′ = s, where s′ is a temporary selector.

3. For each x in s′, extend s′ with elements needed to satisfy
conditions (ii) and (iii).

4. Apply 3 until a fixpoint is reached, i.e., s′ does not change.
5. Extract subgraph t′ induced by s′ as t′ = Subgraph(m′, s′).
6. Obtain a “cover” of t′, i.e., a minimal model t that is

semantically equivalent to t′.
7. Return Copy(t, All(t)) as result of extraction. Notice that the

operator Copy (Section 4.1) returns a model and a mapping.
 Deleting a selected portion of a model can be defined as

extraction of the unselected portion. Thus, we define
operator Delete(m, s)
 return Extract(m, All(m) – s);

Note that the nodes of s that do not represent the model
elements of m, i.e., are not members of All(m), have no impact on
the result of deletion due to applying All(m) – s.

4.4 Match
The purpose of Match is to uncover how two models
“correspond” to each other. It takes two models as input and
returns a morphism between them. Match is inherently heuristic.
So like the previous literature on Match [23], we do not offer a
formal definition of what constitutes a correct output morphism.
In general, matching two schemas requires information that is not
present in the schemas and cannot be fully automated. Hence, a
human engineer needs to review and adjust the suggestions
produced by an automatic procedure, either in a post-processing
step or iteratively.

4.5 Merge
To combine two models into one, we utilize the operator Merge,
applied as 〈m, m1_m, m2_m〉 = Merge(m1, m2, map). If the input
models m1 and m2 are well-formed, Merge should produce a
well-formed model m that (i) is at least as expressive as each of
the input models, i.e., capable of representing the information
contained in both models, and (ii) is “minimal”, i.e., deleting any
element makes the model less expressive than one of the input
models. The third parameter to Merge is a morphism map that
describes elements of m1 and m2 that are equivalent and should
be “merged” into a single element in m. The output morphisms
m1_m and m2_m identify the counterparts of the elements of m1
and m2 in the merged model m.

The conceptual definition of Merge given above does not say
anything about the naming and ordering of model elements. For
example, it does not prescribe that the attribute names of m1 take
precedence over those of m2, or the other way around. These
details are not considered to be part of the semantics of Merge
because they inherently involve end-user decision making. They
are discussed in Section 5.3.

5. IMPLEMENTATION
In this section we discuss our implementation of the conceptual
structures and operators presented above. We have found that the
relations that were used in Section 3 as standard mathematical
representation of graphs actually are a convenient implementation
structure too. Our graph representation is based on the classical
relational data model, in which node identifiers are constants that
can be shared across models. We chose a relational approach
instead of an object-oriented one (e.g., the one in [5]) to simplify
the implementation and specification of the operators, which can
often be done using SQL. Our relational graph model is based on
the W3C’s Resource Description Framework (RDF).

For encoding relational schemas, XML schemas, and SQL
views as graphs we use the following approach. Our meta-model
for relational schemas is based on OIM [8]. For example, the
model elements of a relational schema comprise tables, columns,
and constraints; a table contains an ordered list of columns, each
of which has a type; tables and columns carry names; the
constraints are specialized into primary key, unique key, non-null,
or referential constraints; a referential constraint refers to two
columns, one of which is a foreign key and the other is a primary
key; etc. Our graph representation of XML schemas builds on
XML DOM. The graph representation of SQL views that we
deploy is comparable to a parse tree produced by an SQL
processor (see Figure 12 in Appendix A). All clauses, statements,
alias definitions, functional terms, etc. are represented as separate
nodes. A view graph does not replicate the names of attributes
and relations used in schemas, but refers directly to the respective
nodes in the schema graphs.

The output of the primitive operators is defined uniquely in
Section 4, except for the operator All, which is implemented
differently for each meta-model. For example, for relational
schemas the implementation of All is specified as follows:
All(m, s) := SELECT m.S FROM m WHERE m.P=type AND m.O IN
{Table, Column, PrimaryKey, UniqueKey, NonNull,
ReferentialConstraint}

5.1 Extract and Delete
To describe our implementation of the Extract and Delete
operators we focus on the relational schemas. Consider the
schema m shown on the left of Figure 7. The primary key
constraints on PID and DID are depicted as horizontal bars
underlining the respective attributes. The referential constraint is
shown as a line connecting PRODUCTS.PID and O-
DETAILS.PID. Assume that in the graph representation of m the
three constraints are denoted by the nodes c1, c2, and c3,
respectively. For brevity, we henceforth refer to the graph nodes
representing the attributes of m simply by using their names.

Figure 7 illustrates six examples of extraction and deletion.
The output morphisms m1_m, …, m6_m are omitted in the figure
for compactness. The first example demonstrates extraction of the
attribute PName yielding schema m1. Condition (ii) of Section 4.3
ensures that m1 is a well-formed relational schema, i.e., attribute
PName belongs to a relation and has a type specification. Applied
to relational schemas, condition (iii) requires that the extracted
schema contain all constraints present in the original schema that
affect the selected elements. For example, extracting the attribute
PRODUCTS.PID from m causes the primary key constraint c1 to
be extracted as well, yielding the schema m2. Dropping c1 would
violate (iii), since it would allow the attribute PID to contain
duplicates and thus the original schema m could not represent all
information of m2. Analogously, extracting O-DETAILS.PID
from m (as schema m4) needs to preserve the referential constraint
c2, which in turn requires the presence of PRODUCTS.PID and
its primary key constraint c3. Condition (iv) prevents any other
attributes from appearing in m4.

 In our prototype, the implementation of operator Extract(m, s)
for relational schemas is based on the conceptual algorithm of
Section 4.3. Steps 1 (“closure”) and 6 (“cover”) are equality
assignments. Step 3 of the algorithm is implemented as follows:
• If s′ contains constraint x, add to s′ all attributes that participate

in the constraint definition.

• If s′ contains attribute x, s′ is extended to include (a) the
enclosing relation of x, (b) the type definition of x, (c) the
referential constraint or non-null constraint for x, (d) the
primary key or unique key definition for x, but only when all
attributes participating in the key definition are contained in x.
In Figure 7, schemas m3 and m5 illustrate the extraction of

nodes that denote constraints. To illustrate case (d), consider a
relation P(Name, DOB, Addr) with a unique key constraint on
(Name, DOB). According to the algorithm, Extract(m, {P.Name})
yields P(Name). The unique key constraint is not included since
P.DOB is not selected.

Notice that condition (iii) of Extract makes it impossible to
delete a constraint on a relational attribute without deleting the
attribute definition, or to delete the primary key attribute
participating in a referential constraint without deleting its foreign
key attribute. For example, consider schema m6 in Figure 7.
Selecting PRODUCTS.PID and the constraints c1 and c2 is not
sufficient for deleting this attribute, since O-DETAILS.PID is not
selected. In [18], we present more flexible operators ExtractMin,
DeleteHard, and DeleteSoft, which allow such deletions by
providing fewer consistency guarantees than Extract and Delete.

Extraction from XML schemas is implemented analogously to
the above algorithm. Type references in XML schemas are treated
similarly to the referential constraints in relational schemas.
Currently, derived types are not supported.

5.2 Match
In our prototype, the Match operator takes as input two models of
the same kind, e.g., two relational schemas, and returns as output
a morphism. We implemented Match using the Similarity
Flooding (SF) algorithm, a graph-matching algorithm presented in
[17]. The SF algorithm exploits the structure of the graphs to be
matched and performs especially well for detecting the
differences between two versions of a schema, which is the case
in our motivating scenario and many other metadata applications.

The SF algorithm takes as input two graphs m1 and m2, and a
set of initial similarity values between the nodes of the graphs,
expressed as a weighted binary relation seed. Each pair 〈l, r〉 of
seed carries a similarity value between zero and one. In a fixpoint
computation, the algorithm iteratively propagates the initial
similarity of nodes to the surrounding nodes, using the intuition

DID: int

Quantity: int
Price: real

O-DETAILS

PID: int

PName: varchar

PRODUCTS

PID: int

m2 = Extract(m, {PRODUCTS.PID}),

PID: int
PRODUCTS

m1 = Extract(m, {PRODUCTS.PName}):

PName: varchar

PRODUCTS

m4 = Extract(m, {O-DETAILS.PID}),

O-DETAILS

PID: int
PRODUCTS

PID: int

m

m6 = Delete(m, {PRODUCTS.PID, , ,
O-DETAILS.DID, }):

Quantity: int
Price: real

O-DETAILS

PID: int
PRODUCTS

PID: int

c1

c2

c3

c3
c1 c2

m3 = Extract(m, { }):c1

m5 = Extract(m, { }):c2

Figure 7: Examples of extraction and deletion from a
relational schema m (output morphisms not shown).

that neighbors of similar nodes are similar. The output of the
algorithm is another weighted binary relation.

In Section 3.2 we defined a morphism as a binary relation. To
include weights in a morphism, we add to it a third attribute Sim
that holds a similarity value for each pair of nodes. The primitive
operators in Section 4.1 ignore this extra information. We
implement the operator Match as
operator Match(m1, m2, seed)
 multimap = SFjoin(m1, m2, seed);
 multimap = Restrict(multimap, m1, m2);
 map = FilterBest(multimap);
return 〈map, multimap〉;

The operator SFjoin encapsulates the SF algorithm. As
explained in [17], the multimap returned by the algorithm may
contain a large fraction of the cross product of the nodes in m1
and m2, and needs to be filtered. The operator FilterBest
implements the filter suggested in [17], which exploits the stable-
marriage property. In addition to filtering, we restrict the result of
the SFjoin operator to the nodes that represent the model elements
of m1 and m2 using the operator Restrict (Section 4.2). The input
morphism seed is typically obtained using another auxiliary
operator NGramMatch(m1, m2), which computes the similarities
of literals in m1 and m2 based on the number of n-grams that they
have in common. Alternatively, seed can be obtained by
composition of morphisms. If seed is omitted, NGramMatch is
invoked in SFjoin by default.

The above Match implementation returns both the filtered
morphism map, and the unfiltered multimap. The morphism map
can be adjusted by the engineer using a graphical tool by invoking
the operator EditMap on the outputs of Match, e.g., as map =
EditMap(map, multimap). The graphical tool allows the engineer
to inspect all candidate matches suggested in multimap.

The script used above for implementing the Match operator
can be easily adapted to call other external schema matchers,
which may deploy thesauri, analyze schema annotations, mine
samples of instance data, reuse previous match results, etc., to
reduce the manual post-processing effort.

5.3 Merge
We discuss our implementation of the Merge operator using the
example in Figure 8. On the top, two sample models m1 and m2
get merged into m (the output morphisms are omitted). The
morphism map is depicted using directed arcs. The direction of
each arc establishes a preference between two model elements;
when collapsing the two elements, the target element is kept in
the output m, whereas the source element is discarded. For
example, the attribute PO.OrderDate is kept and ORDER.ODate
is discarded. Such preferences are not part of the semantics of the
Merge operator (Section 4.5), but are essential for practical
deployment. The input morphism map contains an extra attribute
Dir to hold the direction of the arcs (→ or ←). Before Merge is
executed, a human engineer has a chance to specify the arc
direction in a graphical tool by invoking the operator EditMap.

The bottom of Figure 8 depicts m1 and m2 as graphs. For
brevity, the arc labels, type edges, and literals are omitted
(compare to Figure 3). Node x corresponds to relation ORDER, x1
denotes ORDER.ODate, etc. The morphism map is {〈x, y, ←〉,
〈x1, y2, →〉, 〈x2, z1, →〉}.

To implement the Merge operator, we developed an algorithm
called GraphMerge, which we describe below. Similar to [11,22],

the algorithm consists of three conceptual steps: node renaming,
graph union, and conflict resolution.
1. In the first step, the graph nodes at the blunt ends of map are

renamed to their targets at sharp ends, in both graphs m1 and
m2. The result of renaming is shown on the bottom left of
Figure 8. Nodes y, x1, and x2 of both graphs have been
renamed respectively to x, y2, and z1.

2. In the second step, we do a graph union, i.e., a set union of
two sets of edges, and obtain the graph depicted on the bottom
right of the figure. This graph is not a well-formed model,
because the node z1, which used to represent the attribute
CUST.Customer in m2, has now become an attribute of two
different relations, x (ORDER) and z (CUST).

3. Such conflicts are resolved in the third and final step of the
GraphMerge algorithm. The above conflict is eliminated by
deleting either the edge between x and z1, or the edge between
z and z1, effectively making Customer an attribute of either
relation CUST or relation ORDER in the merged schema. The
choice is made by a human engineer.

Step 3 is the costliest step of the algorithm, since it requires
human feedback. To partially automate conflict resolution, we
developed the following heuristic. Observe that in Figure 8 it
seems more “natural” to keep the attribute Customer in relation
CUST than to move it to ORDER. To generalize this observation,
we track the origin of each edge in the merged graph, and assign
to each edge a tag, such as +− or o+, which indicates whether
each of the nodes incident at the edge was a source node of map
(−), a target node (+) of map, or none of the two (o) (these are the
only three possible cases assuming that source and target nodes of
map are disjoint). For example, the edge 〈x, z1〉 obtained by
renaming from 〈x, x2〉 is tagged with +−, since x is a target node
and x2 is a source node of map. Analogously, the edge 〈z, z1〉 is
tagged with o+, since z does not appear in map at all.
If we knew that o+ edges are always preferred over +− edges,
then, in a conflict 〈x, z1〉 could be eliminated without asking the
engineer. We examined a variety of merge problems in the
context of relational schemas, XML schemas, and SQL views,
and established empirically a total order among all tag variations,
which helps resolve many conflicts automatically in a way that
matches human intuition. This order is shown in the middle right
of Figure 8. Intuitively, edges between unchanged nodes (oo) are

x

x1
x2

x3

z

z1

y

y1
y2

x

y2
z1

x3

z

z1

x

y1
y2

x

y2
z1

x3
y1

z

∪

−+

−
− +

+

+−,−+

+−
+o

o+−o

o

o o

oo
o+
o−
+o
−o
++
+−
−+
−−

priority order
for conflict
resolution
heuristic:

ODate
CName
CAddr

ORDER

Customer

CUST

Amount
OrderDate

PO

OrderDate
CAddr
Amount

ORDER

Customer

CUST

m1 m2 m

Figure 8: Merging two sample schemas

least likely to be rejected in a conflict, and thus have the highest
priority. Similarly, edges incident at + seem more likely to be
preferred than those incident at −. Thus, Steps 2 and 3 are realized
as follows. First, all edges in the merged graph are sorted by
decreasing priority. Then, iteratively, each edge is taken off the
top of the sorted list and is appended to an (initially empty) graph
G. If appending the edge violates model consistency, it is
rejected. Once all edges have been appended, the engineer
examines the result and the choices made heuristically, and makes
any necessary adjustments.

In the above description of the algorithm, we factored out an
important aspect, the ordering of nodes within parent. To illustrate
how we reestablish a correct order in the merged schema,
consider Figure 8. Node y denoting the relation PO is renamed to
x. Thus, when merging this node with the original x in m1, we
move attributes y1 (Amount) and y2 (OrderDate) to the last
position in the merged schema m. However, OrderDate
“overrides” ODate, the first attribute in relation ORDER, and
should remain at the first position. Hence, in schema m, the
resulting order of attributes is OrderDate, CAddr, Amount.

The GraphMerge algorithm is summarized below:

Algorithm GraphMerge(m1, m2, map)
 M := m1 ∪ m2; L := empty list; G := empty graph
 for each edge e in M do
 rename nodes of e using map; assign tag to e; append e to L;
 end for
 sort edges in L by decreasing tag priority;
 maxN := SELECT max(M.N) FROM M;
 while L not empty do
 take edge e=〈s, p, o, n〉 off top of L;
 if tag(e) one of {“−o”, “−+”, “−−”} then
 n := n + maxN;
 if o is literal then continue loop end if
 end if
 if exists e′ = 〈s, p, o, n′〉 in G then
 replace e′ in G by 〈s, p, o, min{n, n′}〉;
 else if not conflictsWith(〈s, p, o, n〉, G) then
 append 〈s, p, o, n〉 to G; end if
 end if
 end while
return G

The number maxN is obtained as the highest existing value of
the ordinal property N in m1 and m2 (compare Section 3.1). It is
used to move the nodes hanging off renamed nodes to the last
positions. To test for renamed nodes, we check whether the
corresponding edge tag starts with −, i.e., is one of −o, −+, or −−.
The literals belonging to such renamed nodes are removed, to
ensure that, e.g., the relation corresponding to node x in the
merged graph of Figure 8 will be named “ORDER” and not “PO”.
The function conflictsWith() checks whether appending a new
edge to G causes a conflict.

The GraphMerge algorithm can be used for various kinds of
models by implementing the function conflictsWith()
appropriately. In our prototype, we deploy the algorithm for
merging relational schemas, XML schemas, and SQL views. For
example, conflict detection for relational schemas checks that
relations cannot contain relations instead of attributes, or that
attributes cannot be shared among relations, etc.

The Merge operator is implemented as follows:

operator Merge(m1, m2, map)
 G = GraphMerge(m1, m2, map);
 s = SELECT L FROM map WHERE Dir=”→” UNION
 SELECT R FROM map WHERE Dir=”←”;
 m1_G = RestrictDomain(map, All(m1) ∩ s) + Id(All(m1) – s);
 m2_G = RestrictDomain(map, All(m2) ∩ s) + Id(All(m2) – s);
 〈m, m_G〉 = Copy(G, All(G));
return 〈m, m1_G ∗ Invert(m_G), m2_G ∗ Invert(m_G) 〉;

Recall that Merge must also return morphisms from each of its
input models to its output model. Thus, after applying
GraphMerge to obtain the merged model G, we compute the
morphisms m1_G and m2_G. The selector s contains all source
nodes of map. For the example of Figure 8, we obtain m1_G as
the union of domain-restricted map, {〈x1, y2〉, 〈x2, z1〉}, which
maps each renamed m1 node to its new name, and the identity
morphism on not renamed nodes, {〈x, x〉, 〈x3, x3〉}. Finally, G is
copied to make the node IDs of the output model m unique, and
the morphisms m1_G and m2_G are composed with Invert(m_G),
so they range over m instead of G.

The GraphMerge algorithm does not “invent” new model
elements or establish new relationships between the existing
elements. Therefore, the operator Merge as implemented above
cannot reorganize schemas to resolve structural conflicts. For
example, consider two XML schemas, S1 with element FullName
and S2 with elements FirstName and LastName. Merging S1 and
S2 should ideally create a new complex type Name with
subordinate elements FirstName and LastName. Currently, we are
working on addressing such structural conflicts by using n-way
merges, in which intermediate schemas Sj are used for describing
the desired structural transformations.

In Section 4.5 we postulated two “semantic” conditions that
Merge should satisfy. Our implementation does not automatically
ensure that condition (i) holds. For example, the engineer might
decide to “override” a non-null constraint on an attribute in one
schema S1 by a primary key constraint of the other schema S2, in
which case the output model would be less expressive (i.e. more
constrained) than S1. Although this flexibility is often desirable in
practice, we are working on a more restrictive version of Merge
that always guarantees to satisfy (i) and (ii).

6. PROTOTYPE
In this section, we describe our prototype, called Rondo2, in more
detail. Its architecture is shown in Figure 9. Its central component
is an interpreter that executes scripts. The interpreter can be run
from the command line, or invoked programmatically by external
applications and tools. Its main task is to orchestrate the data flow
between the operators. The operators can be defined either by
providing a native implementation, or by means of scripts. For
example, a native operator like ReadSQLDDL reads a text
document containing the definition of a relational database and
creates its graph representation, whereas WriteSQLDDL exports
the graph back as text. Similarly, two native operators ReadDb
and WriteDb load and store arbitrary graphs in an SQL DBMS.
Native operators are defined in scripts using statements like
alias ReadSQLDDL <Java class name>;

Other operators that have been implemented natively include
all primitive operators of Section 5, operators that launch GUIs
for editing morphisms and selectors, such as EditMap or

2 Rondo: a musical work in which the main theme returns a

number of times.

EditSelector, schema translation and conversion operators, and
the operators SFjoin and GraphMerge. All other operators, such
as Range, Match, or Merge, are implemented by scripts presented
in the previous sections. The specification of the commonly used
native or derived operators can be grouped in a single script and
utilized in other scripts using include statements.

The interpreter provides a debugging facility that allows
examining the execution traces of complex scripts, and supports
flexible handling of the input and output parameters of operators.
For example, if an operator returns more than one argument (as
does our implementation of the operator Match), some of which
are not used subsequently (as in script PropagateChanges in
Section 2), they can be tacitly ignored.

For minimizing the amount of GUI programming needed for
visualizing various kinds of models, we used the following
technique. We require an operator like WriteSQLDDL to output
not only the textual representation of the model, but also a data
structure that describes how the terms in the text relate to the
model elements, or graph nodes. In this way the schema elements
shown in Figure 11 enclosed in boxes are associated with the
graph nodes representing those elements, and the GUI operators
EditMap and EditSelector can be used in exactly the same way
for relational schemas (Figure 11) or SQL views (Figure 12).

At the current stage, our prototype supports the basic features
of SQL DDL, XML Schema, RDF Schema, and SQL views, and,
in preliminary form, UML. To introduce a new modeling
language in the prototype, two steps are required. First, the
import/export operators need to be provided, which ensure
lossless round-tripping from the native format to graphs and back.
Second, several callbacks need to be implemented for supporting
the operators All, Extract, and GraphMerge.

The code breakdown of the prototype is shown in Figure 10. A
large share of the implementation effort was due to the graph
APIs responsible for in-memory representation and manipulation
of graphs and morphisms, and the database support. The key
generic model-management functionality comprises less than 7K
lines of code. It includes the interpreter (2050), primitive
operators (660), SFjoin (1760) and GraphMerge (700)
implementations, as well as the generic GUI operators (1400).
The non-generic part is essentially divided among the code
needed to support SDL DDL, XML schemas, and SQL views.
The smallest portion of code is due to converters: XSD2SQL
(260), SQL2XSD (250), View2Morphism (90), and
Morphism2View (200). The compactness of the converters is
mostly due to the fact that they operate on the internal graph
representation using expressive queries. The total amount of code
in the prototype is below 24K lines. The total scripting code

developed so far is measured in hundreds of lines. The scenarios
shown in the paper run in a few seconds on a 600 MHz laptop
with 256 MB of memory.

Further scenarios that we implemented include a reintegration
scenario from the context of version management, iterative merge,
a warehousing scenario, in which we extract a subset of the
schema that is sufficient to answer a given set queries, and a view
reuse scenario. Due to space limitations, we cannot present all of
them in this paper. The view reuse scenario is in Appendix A.
Among other aspects, it illustrates how views can be merged,
presents the GUIs used in our prototype, and demonstrates the use
of the operators Morphism2View and View2Morphism.

7. RELATED WORK
Many individual aspects of model-management have been studied
extensively in the literature, which is too voluminous to cite here.
We highlight only some key aspects. In previous work
[2,5,11,12,13,19,20,22], schemas were typically represented as
graphs whose nodes denote classes of entities that participate in
various semantically rich relationships, such as is-a, has-a,
functional dependencies, etc. In our approach, the graphs are
syntactic structures, whose semantics is opaque to many
operators. Morphisms have been used under varying names in
many systems, e.g., as schema correspondences in Clio [21]. To
our knowledge, selectors have been first introduced in this paper.

Past papers on model management reified mappings as models
[5,9,22]. One of the surprises of the present work is how much
leverage one can get out of simple morphisms. However,
morphisms clearly have their limits. Appendix A presents a
scenario in which SQL views are used as reified mappings to
describe instance transformations. Reified mappings add
complexity to scripts and operator implementations. A general
treatment of reified mappings is subject of our ongoing work.

The operators discussed in [5] include Diff, Enumerate, and
Apply. As explained in [18], in Rondo we implemented the
operator Diff using extraction of the unmatched portion of one of
the input models. Operators Apply and Enumerate are invoked by
passing a selector to native Java code. The change propagation
script of Section 2 is an alternative realization of the round-trip
engineering scenario presented in [5].

A substantial effort has been devoted recently to schema
matching. To minimize the amount of manual post-processing,
existing schema matching tools deploy various techniques
surveyed in [23], such as machine learning [4], etc. In our
prototype, we use the structural matcher of [17], which is
available for download from the authors’ website. Our definition
of the Merge operator was influenced by the schema join
operation of [1]. Schema merging has been further addressed e.g.
in [11,19,22]. The algorithms suggested there can exploit rich
relationship types that are not available in the GraphMerge

SQL
DBMS

File
system

SQL tables

graphs

files
ReadDb
WriteDb

ReadSQLDDL
WriteSQLDDL
ReadXSD
WriteXSD
ReadSQLView
WriteSQLView

…

Compose
Domain
GraphMerge
SFjoin
EditMap (GUI)

…

Range
Match
Merge
PropagateChan
…

Native operators Scripts

Interpreter

Figure 9: Architecture of the prototype

11820

6800

1500

1370

1280 600

DB + graph APIs

Generic MM

SQL views

XML Schema

SQL DDL

Converters

Figure 10: Code breakdown in prototype (in lines of code)

algorithm that we developed, and do not take the ordering of
model elements into account. Our heuristic deployed in
GraphMerge is only an initial step in the challenging research
issue of semiautomatic conflict resolution.

Schema translation across different modeling languages has
been explored e.g. in [2,13]. The techniques presented there could
be used for implementing a generic operator for generating one
model from another. Currently, we are using a less general
approach, in which each converter is implemented as a custom,
non-generic operator.

To our knowledge, the generic operators Extract and Delete
have first been investigated and implemented in this paper. Our
algorithm for Extract was inspired by the discussion of schema
merging in [11].

The operators presented in this paper are mostly syntactic, just
like the conceptual structures, and are expressed as graph
transformations. Focusing on syntax allows the operators like
Match or Merge to be implemented in a generic fashion for
different kinds of models. However, understanding the semantics
of these operators is crucial for assessing the correctness of
model-management scripts. For example, the effect of applying
“syntactic” operators to schemas ultimately needs to be expressed
in terms of what these operators do to the instances of these
schemas. Conditions (i)–(iv) for the Extract operator (Section
4.3), or (i)–(ii) for Merge (Section 4.5) reflect the semantics of
these operators to a limited degree. Algebraic and model-theoretic
semantics of model-management structures and operators has
been considered in more detail in [1,19], but is still a new and
largely unexplored area. Currently we are working on an instance-
based characterization of morphism semantics, building on the
approach of [16].

8. CONCLUSIONS
In this paper we presented a programming platform for model
management that implements all generic operators suggested so
far in the literature. We explored the use of morphisms and
selectors and introduced several novel generic operators. We
discussed the operator semantics and the algorithms that we
developed for implementing them. We showed that introducing a
new model type like SQL DDL schemas in our prototype requires
a moderate programming effort, but brings a large new class of
model-management tasks within reach.

The main conclusions that we draw are the following:
1. One can solve practical problems using the model

management operators.
2. The solutions require a relatively small amount of code.
3. One can get very far using a relatively weak representation for

models and mappings.
Our implementation experience, backed by the in-depth
investigation of the individual operations by other researchers,
suggests that the question raised in [7] is likely to have a positive
answer, i.e., generic metadata management is in fact feasible.
Even if we cannot handle subtle and complex cases, if we can
solve a large class of non-trivial problems then we are offering a
useful programming platform. Still, resolving the debate of [7] to
the full extent can be done only by writing scripts for a substantial
number of real applications and demonstrating that they work.

Other hard challenges remain open. Examples are providing
meaningful semantic constraints on operators and proving that
certain syntactic transformations “play by the rules”. A salient
non-technical challenge is acceptance by the developer

community. As with each new programming paradigm, the
willingness of engineers to learn a new way of approaching old
problems is critical for success of generic model management.

9. ACKNOWLEDGMENTS
We thank Gio Wiederhold and the anonymous reviewers for their
insightful comments on the paper. We are grateful to Serge
Abiteboul, Paolo Atzeni, Stefano Ceri, Alon Halevy, Martin
Kersten, Renée Miller, Rachel Pottinger, and Gerhard Weikum
for helpful discussions. This work was supported in part by a
grant from the Database Group at Microsoft Research.

A. VIEW-REUSE SCENARIO
In this appendix, we examine another scenario, which illustrates
the use of the operators presented in this paper for addressing a
typical data warehousing task. Consider adding a new source S2
to a data warehouse D. Assume that S2 is similar to an existing
source S1. The morphism S1_S2 between the two source schemas
is shown in Figure 11. Let an existing SQL view vS1_D describe
how the instances of S1 populate D. The view vS1_D is depicted
in the middle of Figure 12 (the relevant portion of the warehouse
schema can be seen in the CREATE VIEW clause). Our goal is to
reuse the view vS1_D for importing S2 data into D, i.e., creating
the view vS2_D. Conventionally, this problem is solved manually
involving a tiresome and error-prone renaming of the attribute and
relation names of vS1_D based on the similarities between S1 and
S2. In our prototype, we obtain vS2_D using the following script:
1. S1_S2 = Match(S1, S2);
2. S1_D = View2Morphism(vS1_D);
3. S2_D = Invert(S1_S2) * S1_D;
4. vS2_D′ = Morphism2View(S2_D);
5. map = Match(vS2_D′, vS1_D, Invert(S1_S2));
6. vS2_D = Merge(vS2_D′, vS1_D, map + S1_S2);

First, we match S1 and S2 to determine the correspondences
between the schemas. As can be seen in Figure 11, some of the
elements of S1 and S2 remain unmatched, whereas others, such as
Department.DeptName are matched to two elements,
Companies.name and Companies.legalEntity. In Step 2, we
extract the morphism S1_D from the view definition vS1_D using
a non-generic operator View2Morphism. For example, the
morphism S1_D, which is omitted in the figures for brevity,
associates the attribute Personnel.Pname with two attributes,
Employee.EmpFName and Employee.EmpLName, etc. Next, we
compute the morphism S2_D by composition. In Step 4, a
“template” view definition vS2_D′ is generated from S2_D using
another non-generic operator Morphism2View. It is shown on the

S1 S2

Figure 11: Morphism between sources S1 and S2

left of Figure 12. Morphism S2_D contains no information as to
how the values of the attribute Personnel.Affiliation are obtained
from Companies.name and Companies.legalEntity. Therefore, a
functional term fct1 is generated in vS2_D′ as a placeholder.

In Step 5, the template vS2_D′ and the existing view vS1_D are
matched, using as a seed the morphism between S1 and S2. The
resulting morphism, after minor manual corrections, is depicted in
Figure 12. Finally, in Step 6 both view definitions are merged to
obtain vS2_D, shown on the right. Notice that the function symbol
fct0 has been correctly replaced by the nested concatenation,
whereas fct1 was left as is. The unmatched WHERE clause was
borrowed from vS1_D; the attribute references have however been
correctly replaced by Companies.cid and Consultants.cid. To
achieve that, the morphism map passed to Merge is extended to
include S1_S2. The heuristic deployed in the GraphMerge
algorithm produces vS2_D fully automatically, due to relative
simplicity of the input views.

REFERENCES
1. S. Alagic, P. A. Bernstein: A Model Theory for Generic

Schema Management. Proc. DBPL, pp. 228-246, 2001
2. P. Atzeni, R. Torlone: Management of Multiple Models in an

Extensible Database Design Tool. pp. 79-95, EDBT 1996
3. S. Bergamaschi, S. Castano, M. Vincini: Semantic Integration

of Semistructured and Structured Data Sources, SIGMOD
Record 28(1), pp. 54-59, 1999

4. J. Berlin, A. Motro: Database Schema Matching Using
Machine Learning with Feature Selection. pp. 452-466,
CAiSE 2002

5. P. A. Bernstein: Applying Model Management to Classical
Meta Data Problems. pp. 209-220, CIDR 2003

6. P. A. Bernstein, A. Halevy, R. A. Pottinger: A Vision for
Management of Complex Models. SIGMOD Record 29(4),
pp. 54-63, 2000

7. P. A. Bernstein (moderator), L. Hass, M. Jarke, E. Rahm,
G. Wiederhold (panelists): Is Generic Metadata Management
Feasible? Panel, pp. 660-662, VLDB 2000

8. P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal,
P. Sanders, D. Shutt: Microsoft Repository Version 2 and the
Open Information Model. Inf. Systems 24(2), p. 71-98, 1999

9. P. A. Bernstein, E. Rahm: Data Warehousing Scenarios for
Model Management. pp. 1-15, Proc. Intl. Conf. on
Conceptual Modeling (ER) 2002

10. S. Bowers, L. Declambre: On Modeling Conformance for
Flexible Transformation over Data Models, Workshop on
Transformation for the Semantic Web, July 2002

11. P. Buneman, S. B. Davidson, A. Kosky: Theoretical Aspects
of Schema Merging. pp. 152-167, EDBT 1992

12. K. T. Claypool, E. A. Rundensteiner: Sangam: A Framework
for Modeling Heterogeneous Database Transformations,
ICEIS 2003

13. S. Cluet, C. Delobel, J. Siméon, K. Smaga: Your Mediators
Need Data Conversion! pp. 177–188, SIGMOD 1998

14. S. Davidson, P. Buneman, A. Kosky: Semantics of Database
Transformations. In B. Thalheim, L. Libkin, Eds., Semantics
in Databases, LNCS 1358, pp. 55–91, 1998

15. R. Hull: Relative Information Capacity of Simple Relational
Database Schemata. SIAM J. Computing, 15(3), pp. 856-886,
Aug 1986

16. J. Madhavan, P. A. Bernstein, P. Domingos, A. Y. Halevy:
Representing and Reasoning about Mappings between
Domain Models. pp. 80-86, AAAI/IAAI 2002

17. S. Melnik, H. Garcia-Molina, E. Rahm: Similarity Flooding:
A Versatile Graph Matching Algorithm and its Application to
Schema Matching. ICDE 2002

18. S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A Programming
Platform for Generic Model Management (Extended
Version). Technical Report, Leipzig University, 2003.
Available at http://dol.uni-leipzig.de/pub/2003-3

19. R. J. Miller, Y. E. Ioannidis, R. Ramakrishnan: Schema
Equivalence in Heterogeneous Systems: Bridging Theory and
Practice. Information Systems 19(1), pp. 3–31, 1994

20. P. Mitra, G. Wiederhold, M. L. Kersten: A Graph-Oriented
Model for Articulation of Ontology Interdependencies. p. 86-
100, EDBT 2000

21. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández,
R. Fagin: Translating Web Data. VLDB 2002

22. R. A. Pottinger, P. A. Bernstein: Creating a Mediated Schema
Based on Initial Correspondences. IEEE Data Engineering
Bulletin, 25(3), Sep 2002

23. E. Rahm, P. A. Bernstein: A Survey of Approaches to
Automatic Schema Matching. VLDB Journal 10(4), 2001

vS2_D′ vS1_D
vS2_D

Figure 12: Merging two SQL views

	page1: 193
	page2: 194
	page3: 195
	page4: 196
	page5: 197
	page6: 198
	page7: 199
	page8: 200
	page9: 201
	page10: 202
	page11: 203
	page12: 204

