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ABSTRACT 
Model management aims at reducing the amount of programming 
needed for the development of metadata-intensive applications. 
We present a first complete prototype of a generic model-
management system, in which high-level operators are used to 
manipulate models and mappings between models. We define the 
key conceptual structures: models, morphisms, and selectors, and 
describe their use and implementation. We specify the semantics 
of the known model-management operators applied to these 
structures, suggest new ones, and develop new algorithms for 
implementing the individual operators. We examine the solutions 
for two model-management tasks that involve manipulations of 
relational schemas, XML schemas, and SQL views. 

1. INTRODUCTION 
A major goal of model management is to reduce the amount of 
programming required for the development of metadata-intensive 
applications. Such applications are deployed in the context of 
database design, data integration, data translation, model-driven 
website management, data warehousing, etc. They manipulate a 
variety of metadata artifacts that are called models, such as 
relational and XML schemas, interface definitions, mediator 
specifications, or website layouts, and mappings between models, 
such as SQL views or XSLT transformations. Many of today’s 
model-management tasks are still solved manually, because an 
automated approach requires too much implementation effort due 
to the lack of a common programming platform. 

Database and software engineering researchers have been 
studying the individual aspects of model management in depth for 
decades. However, factoring out the common aspects of model 
management has only recently become a subject of active 
research [7]. A major goal of this recent research has been to 
develop a set of algebraic operators, such as Compose, Match and 
Merge, that generalize the transformation operations utilized 
across various metadata applications. These operators are applied 
to models and mappings as a whole, rather than to their individual 
elements, and simplify the programming of metadata applications 
by raising the level of abstraction. Moreover, the operators are 
generic in the sense that they can be utilized for different kinds of 
models and scenarios. Although many model-management tasks 
can be automated, there remain critical places where human 
decision-making is needed, e.g., to address semantic 

heterogeneity. Thus, some of the operations are inherently 
semiautomatic and require feedback of a human engineer before, 
during, or after operator execution. 

Our goal is to investigate whether metadata management can 
be done in a generic fashion, the key question raised in [7]. 
Detailed walkthroughs of various model-management problems 
have been examined to address this question (e.g., in [5,9]). Our 
contribution is that we succeeded in making such abstract 
programs executable. In this paper, we present a prototype of a 
programming platform for model management and describe the 
conceptual structures and operators that we developed. Primarily, 
our prototype supports the developers of model-management 
solutions, by providing a high-level programming environment. 
However, it also addresses the needs of the engineers who deploy 
these solutions by offering a graphical user interface (GUI) to 
receive their feedback in semiautomatic operations. 

In designing and implementing our prototype, we consciously 
focus on simplicity. We investigate how far we can go with a 
comparatively weak representation of models and mappings that 
can be used to solve an interesting class of problems. We also 
determine how much code is needed for the most basic, but still 
useful, model management system. 
The key contributions of this paper are as follows: 
• We introduce conceptual structures used for representing 

models and mappings. We explore a simple class of mappings 
between models that we call morphisms and suggest a new 
structure called selector. 

• We define the semantics of the key model-management 
operators on the conceptual structures that we introduce, and 
suggest several new generic operators. 

• We present new algorithms used for implementing the 
operators Extract and Merge. 

• We examine the solutions for two important model-
management tasks that involve manipulations of relational 
schemas, XML schemas, and SQL views. 

• Finally, we describe the first complete prototype 
implementation of model management and demonstrate how it 
can be extended to embrace new kinds of models. 

This paper is organized as follows. In Section 2 we walk through 
a model-management scenario to motivate the conceptual struc-
tures and operator definitions that we present in Sections 3 and 4. 
Section 5 is devoted to the implementation and the algorithms that 
we developed. Section 6 describes our prototype in more detail. 
Related work is reviewed in Section 7. We conclude in Section 8. 
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2. MOTIVATING SCENARIO 
To motivate the operator definitions that we give in this paper, we 
will use a scenario that is illustrated in Figure 1 and exemplifies 
one of the patterns that can be found in many metadata-intensive 
applications. Consider an e-commerce company that needs to 
supply its purchase order data to a business partner. The data is 
stored in a relational database according to a relational schema s1. 
For the purpose of data exchange, both companies agree to use a 
common XML schema d1. (The correspondences between the 
elements of schema s1 and d1 are depicted as light gray lines.) 
Schema d1 differs from s1 in terms of structure and naming. 

The relational schema undergoes periodic changes due to the 
dynamic nature of the business. Assume that s2 is a new version 
of s1, in which columns “Brand” and “Discount” have been 
deleted, columns “ShipDate”, “FreightCharge”, and “Rebate” 
have been added, and column “UnitPrice” has been renamed to 
“Price”. These changes (highlighted in bold in Figure 1) need to 
be propagated to the XML schema, so that d1 becomes d2. 

The change propagation described above can be done as 
follows. First, the changes introduced by s2 need to be detected, 
i.e., s1 and s2 need to be matched. Then, the d1 images of the 
elements deleted in s1 need to be removed from d1. Finally, the 
XML schema counterparts of the added and renamed columns in 
s1 need to be merged into d1 to obtain d2. During these steps, 
intervention of a human engineer may be required, for example, 
to decide whether the new column “Rebate” should indeed be 
added to the exchange schema or is not part of the exchanged data 
and should be omitted. Still, a major portion of the work is 
mechanical and can be automated. 

Notice that the procedure sketched above could be applied in 
the reverse case, when the XML schema d1 is the one that has 
been modified and the changes are to be propagated back to the 
relational schema s1. Another instance of the same pattern is 
round-tripping the modifications from a relational schema like s1 
to an existing conceptual schema of the data, which may be 
expressed as an ER diagram. A key idea of generic model 

management is to solve such tasks at a high level of abstraction 
using a concise generic script. 

Below we present an actual model-management script that 
implements the above solution for our change propagation 
scenario, and is directly executable by our prototype. We will use 
the script to introduce the major model-management operators, 
which we define in the subsequent sections. To explain the 
individual steps of the script, we use a schematic representation of 
the solution shown in Figure 2. The rectangles labeled s1, s2, d1, 
and d2 represent the four schemas of Figure 1. The arcs between 
the rectangles denote the mappings between the schemas. For ex-
ample, the correspondences between schemas s1 and d1 in 
Figure 1 are shown as a single arc from rectangle s1 to d1 in 
Figure 2.  

At the bottom of Figure 2, there is a schema c, which does not 
appear in Figure 1. To see why it is needed, recall that s1 and d1 
are expressed using two different schema languages. The new 
schema elements added to s1 by way of s2 have no counterparts 
in schema d1. That is, the new elements need to be converted 
from the source schema language to the target language. For 
example, the attribute “ShipDate” added to relation “ORDERS” 
needs to be converted to a subelement of the complex type 
“PurchaseOrder” in the XML schema. This step is often referred 
to as schema translation in the literature. In our solution, we 
assume that such a translation tool is available as an operator, say 
SQL2XSD, which takes as input a relational schema and produces 
as output an XML schema and a mapping between the original 
and converted schema elements. Thus, the schema c and the 
mapping s2_c between s2 and c shown in Figure 2 are obtained as 
〈c, s2_c〉 = SQL2XSD(s2). Note that schema c is not yet the 
desired result d2; for example, c may contain an unneeded 
complex type O-DETAILS, and may differ from d1 structurally. 

Now, our solution for the change propagation scenario can be 
expressed as the following script: 
operator PropagateChanges(s1, d1, s1_d1, s2, c, s2_c) 
  1.  s1_s2 = Match(s1, s2); 
  2.  〈d1′, d1′_d1〉 =  
                 Delete(d1, Traverse(All(s1) − Domain(s1_s2), s1_d1)); 
  3. 〈c′, c′_c〉 =  Extract(c, Traverse(All(s2) − Range(s1_s2), s2_c));  
  4.  c′_d1′ =  
          c′_c ∗ Invert(s2_c) ∗ Invert(s1_s2) ∗ s1_d1 ∗ Invert(d1′_d1); 
  5.  〈d2, c′_d2, d1′_d2〉 = Merge(c′, d1′, c′_d1′);  
  6.  s2_d2 = s2_c ∗ Invert(c′_c) ∗ c′_d2 + 
                      Invert(s1_s2) ∗ s1_d1 ∗ Invert(d1′_d1) ∗ d1′_d2; 
  7.  return 〈d2, s2_d2〉; 

The script defines a generic operator PropagateChanges, which 
takes six parameters as input (including the converted schema c), 
and produces two return values 〈d2, s2_d2〉 as output. Below, we 
explain the script line by line.  
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Figure 2: Schematic representation of a solution for 

change propagation scenario of Figure 1 
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Figure 1: Scenario illustrating propagation of changes 

from a relational to an XML schema 



 

1. In line 1, schemas s1 and s2 are “matched” to detect the 
changes. The result is a mapping s1_s2 shown schematically 
in Figure 2. Speaking informally, the mapping connects the 
equivalent elements of s1 and s2. The new elements of s2 
(e.g., “ShipDate”) and deleted elements of s1 (e.g., “Brand”) 
have no matching counterparts, so they remain unconnected. 

2. Line 2 illustrates how operators can be combined. First, the 
deleted elements of s1 are identified using the expression 
All(s1) − Domain(s1_s2), i.e., all elements of s1 without the 
matched (and thus not deleted) elements. Then, these elements 
are used to “traverse” the mapping s1_d1. For example, the 
deleted relational attribute “Brand” traverses s1_d1 and yields 
the XML schema element “Brand” of d1. Finally, these d1 
images of the deleted elements are removed from d1 using the 
operator Delete. The result is a new schema d1′ (a 
“subschema” of d1), and a mapping d1′_d1, which describes 
how d1′ relates to d1.   

3. Line 3 is quite similar to line 2. The new elements of s2, i.e., 
those missing from the range of s1_s2, traverse s2_c into the 
converted model c. For example, the image of relational 
attribute “ShipDate” is an XML schema element “ShipDate” 
obtained by conversion. A “subschema” c′ containing the 
images of the new elements is then extracted from c using the 
operator Extract, which also returns the mapping c′_c. In 
addition to the elements obtained by traversal like “ShipDate”, 
c′ contains extra elements of c, such as the complex type that 
encloses “ShipDate”, to make c′ a well-formed XML schema. 
Such extra elements are called “support” elements [5]. 

4. At this point, d1′ is a subschema of d1 without the deleted 
elements, and c′ contains the added elements and their support 
elements. Schemas d1′ and c′ need to be merged to obtain the 
final result d2 (line 5). As we explain in Section 4.5, the 
merging of two schemas is driven by a mapping that tells how 
elements of the two schemas, specifically the support 
elements of c′, correspond to each other. The mapping 
between d1′ and c′ is shown in Figure 2 as an arc connecting 
the two enclosed rectangles. This mapping can be obtained by 
“composing” the existing mappings between c′, c, s1, s2, d1, 
and d1′ as c′_c ∗ Invert(s2_c) ∗ Invert(s1_s2) ∗ s1_d1 ∗ 
Invert(d1′_d1). To get the composition right, mappings s2_c, 
s1_s2, and d1′_d1 need to be “inverted”, i.e., the domains and 
ranges of the mappings need to be swapped. 

5. The final result of change propagation, schema d2, is 
computed by the Merge operator. Additionally, the operator 
returns two mappings, c′_d2 and d1′_d2, which describe how 
d2 relates to the inputs to Merge, c′ and d1′.  

6. As a last step, we compute s2_d2, a new version of the 
mapping s1_d1 given as part of the input. We need s2_d2 to 
ensure that our change propagation script can be re-applied if 
the source schema evolves again. Since d2 is obtained by 
merging d1′ and c′, the mapping s2_d2 is essentially a union 
of two mappings, the one between s2 and the d1′-portion of 
d2, and the one between the s2 and c′-portion of d2. These 
two mappings can be obtained by composition as s2_c ∗ 
Invert(c′_c) ∗ c′_d2 and Invert(s1_s2) ∗ s1_d1 ∗ 
Invert(d1′_d1) ∗ d1′_d2, respectively. Their union is denoted 
using the plus sign (+). 

Notice that the above script is not limited to propagating changes 
from relational schemas to XML schemas. In fact, the reverse 

propagation problem can be solved using the same script by 
assigning the original and modified XML schemas to s1 and s2, 
and the relational schema to d1. Of course, the input parameters c 
and s2_c need to be obtained using a different converter, e.g., as 
〈c, s2_c〉 = XSD2SQL(s2). 

In our implementation, every intermediate result of a script 
such as the one above can be examined and adjusted by a human 
engineer using a graphical tool. Specifically, the result of Match 
in line 1 can be post-processed to remove incorrectly suggested 
matches and add missing ones. Similarly, the merging in line 5 is 
in general a semiautomatic process, which requires human 
feedback. Finally, by adjusting the intermediate results of 
operator compositions in lines 2 and 3 the engineer can decide 
which additions and deletions should not be propagated. 

In the above discussion, we introduced several operators 
informally. To make these operators effective and usable by 
developers, their semantics needs to be specified precisely. Our 
goal is to make the semantics as “generic” as possible, so the 
operators can serve a broad range of model-management tasks. In 
the next two sections we describe this semantics, first by defining 
the structures on which they operate, and then by describing the 
operators themselves.  

3. CONCEPTUAL STRUCTURES 
Model-management applications deal with a wide range of 
metadata artifacts, which include not only schemas, such as the 
relational and XML schemas in our motivating scenario, but also 
view definitions, interface specifications, etc. We represent the 
formal descriptions, or models, of these artifacts as directed 
labeled graphs. This graph representation is quite flexible and can 
accommodate virtually any type of models.  

We also introduce two additional structures, called morphisms 
and selectors. Morphisms are binary relationships that establish 
n:m correspondences between the elements of two models (i.e., 
nodes of two graphs). For example, in our motivating scenario 
morphisms are used for keeping track of the XML counterparts of 
the relational schema elements. Two morphisms, one between s1 
and d1 and another between s2 and d2, are shown in Figure 1 
using light gray lines. The third conceptual structure, selector, is a 
set of elements used in models. A major benefit of using selectors 
is that various operations, in particular the set operations, which 
would typically produce non-well-formed models if used directly, 
can be applied to selectors safely. 

In the following subsections, we define models, morphisms, 
and selectors as abstract graph and set structures. We also 
describe them in an equivalent representation as relations. The 
latter will make it easier to define the semantics of the operators, 
which follow later. 
3.1 Models 
We represent models as directed labeled graphs. The nodes of 
such graphs denote model elements, such as relations and 
attributes in relational schemas, type definitions in XML schemas, 
clauses of SQL statements, etc. We assume that each element is 
uniquely identified by an object identifier (OID). A directed 
labeled graph is a set of edges 〈s, p, o〉 where s is the source node, 
p is the edge label, and o is the target node1. For a given source s 
and label p, the target nodes may be sequentially ordered. Their 
order can be captured by an ordinal property on edges. Thus, 

                                                                 
1 The notation (s, p, o) stands for (subject, predicate, object). 
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Figure 3: Sample model shown as graph and 4-tuples 

conceptually a graph can be viewed as a relation M with four 
attributes, M(S: OID, P: OID, O: OID ∪ Literal, N: integer), 
where N is an optional attribute used for ordering and S, P, O 
form a unique key. The node identifiers and edge labels are drawn 
from the set of OIDs, which can be implemented as integers, 
pointers, URIs, etc. The literals include strings, integers, floats, 
and other data types. The type of attribute O is defined as a union 
type of OIDs and literals. 

Consider the example in Figure 3. It illustrates how a relational 
table PRODUCTS defined in SQL DDL (top left) is represented 
as a graph (bottom left) and as a corresponding set of 4-tuples (on 
the right). The ovals in the graph denote OIDs, and rectangles 
denote literals. Nodes a1, a2, a3 represent the table PRODUCTS 
and its columns PID and PName, respectively. Node a4 represents 
the primary key constraint on PID. For readability, the identifiers 
such as Table or Column are spelled out as names rather than 
opaque IDs. 

The order of the columns identified by the nodes a2 and a3 is 
determined by the values 1 and 2 of attribute N (fourth attribute of 
the table with 4-tuples). In general, the node ordering with respect 
to a given {src node} and {edge label} is determined by the SQL 
query: SELECT M.O FROM M WHERE M.S={src node} AND 
M.P={edge label} ORDER BY M.N. In the example, we have 
M.S=a1 AND M.P=column.  

A formal specification of the rules for encoding a model as a 
graph is called a meta-model. A model is well-formed if it con-
forms to its meta-model. For example, Figure 3 illustrates a graph 
encoding of relational schemas that uses specific edge labels, such 
as SQLtype or name, and auxiliary nodes, such as Table, varchar, 
or PrimaryKey. If we know the relational meta-model, we can tell 
whether or not a given graph represents a well-formed relational 
schema. For example, if we know that each column must have an 
SQL type, then removing the edge 〈a2, SQLtype, int〉 from the 
graph in Figure 3 yields a model that is not well-formed. For the 
purposes of this paper, it is unimportant how a meta-model is 
represented and how one checks that a model conforms to its 
meta-model. The details of the graph representation of models 
remain opaque to the developer of model management applica-
tions. Of course, the representation is visible to developers of 
model management operators. So, a developer must be aware of 
the representation to implement a custom, non-generic operator, 
e.g., an operator to normalize relational schemas. 

3.2 Morphisms 
Many metadata-intensive applications, such as data integration 
and warehousing tools, use a graphical metaphor like the one 
shown in Figure 1 for representing schema mappings. These 
mappings are shown to the engineer as sets of lines connecting the 

elements of two schemas. We call such mappings (schema) 
morphisms. Thus, a morphism is a binary relation over two 
(possibly overlapping) sets of OIDs, i.e., a set of pairs 〈l, r〉 drawn 
from OID×OID. 

Clearly, a morphism is a weaker representation of a 
transformation between two models than an SQL view or the 
mapping languages and expressions suggested in [3,5,14,19,20]. 
In particular, a morphism carries no semantics about the 
transformation of instances that conform to the models (e.g., no 
SQL WHERE-clause). Still, we have found that many mappings 
can be expressed in this way such as in our change propagation 
scenario of Section 2. The morphisms have several other 
advantages. Given our graph representation of models, a 
morphism can represent a mapping between different kinds of 
models, e.g., between a relational and XML schema. A morphism 
can always be inverted and composed. (In contrast, an SQL view 
cannot be composed with an XSLT transformation in an obvious 
way.) And since morphisms can be expressed as binary relations, 
they can be implemented and manipulated easily. 

Consider the example in Figure 4. The top part of the figure 
shows the relational schema of Figure 3 and an XML schema. A 
morphism between the two schemas is depicted graphically as 
four arcs that connect the elements of the schemas. The bottom 
part of the figure shows the same morphism represented as a 
relation. The node identifiers a1, a2, a3 correspond to those of 
Figure 3. The nodes b2, b3, b4, b5 denote respectively the 
complex type “Product” and the elements “ProductID”, 
“ProductName”, and “ProductType” defined in the XML schema 
(its graph representation is illustrated in Figure 5). Notice that a 
node can be connected to multiple nodes; e.g. a3 is connected to 
b4 and b5. Moreover, various kinds of model elements, such as 
relations or attributes, can participate in a morphism. 

In an implementation, it may be convenient to annotate the 
pairs 〈l, r〉 with additional properties. For example, most 
implementations of the Match operator compute similarity values 
between the elements of two models. These values can be 
returned conveniently using a morphism in which each pair has an 
additional similarity property. Hence, although we define a 
morphism conceptually as a binary relation H(L: OID, R: OID), it 
may contain additional attributes, as required by the individual 
operators. Typically, the L elements originate from one model, 
and the R elements from another.  

3.3 Selectors 
A selector is a set of node identifiers, which may originate from a 
single or multiple models. It can be represented as a relation with 
a single attribute, S(V: OID), where V is a unique key. Figure 6 
shows an example of a selector that contains all OIDs used in the 
model depicted in Figure 3. 

<schema xmlns=“…”>
<complexType name=“Product”>
<element name=“ProductID” type=“xs:int”/>
<element name=“ProductName” type=“xs:string”/>
<element name=“ProductType” type=“xs:string”/>

</complexType>
</schema>

CREATE TABLE PRODUCTS (
PID int,
PName varchar

)
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Figure 4: Morphism between relational and XML schema 



 

4. OPERATORS 
In our motivating scenario, we introduced high-level operators 
whose inputs and outputs are models, morphisms and selectors, 
such as Match, Delete, Traverse, Extract, and Invert. Such 
operators raise the level of abstraction of manipulating metadata 
structures by considering whole models and morphisms at a time, 
as opposed to node-at-a-time primitives. In this section, we define 
the precise semantics of these operators on the structures defined 
in Section 3. Their implementation is covered in Section 5. 

We start our presentation of operator semantics in Section 4.1 
with what we call primitive operators. These are generic operators 
whose semantics can be defined formally using the relational 
algebraic manipulation of the relational representations of Section 
3. For notational convenience, we express this manipulation in 
SQL. After that, we introduce the other more powerful operators: 
such as Extract, Delete, Match, and Merge, whose semantics is 
more subtle and still a subject of ongoing research. 

As we will see, some operators, such as Subgraph or Copy, are 
agnostic about the kind of models passed as input, whereas the 
semantics of others depends on the underlying meta-model. The 
GUI operators EditMap and EditSelector allow arbitrary 
transformations of morphisms and selectors by an engineer. Thus, 
their semantics cannot be constrained any further. 

4.1 Primitive operators 
Table 1 lists the definitions of seven primitive operators. The left 
column contains the operator definitions expressed in SQL. 
Variables m, s, and map hold a model, a selector, and a morphism, 
respectively. The right column illustrates the application of the 
operators using simple examples. All primitive operators defined 
in the table are standard set-theoretic operators. Notice that their 
definitions are expressed declaratively, i.e., the implementation of 
these operators, or functional combinations thereof, can be 
optimized using standard query optimization techniques. 

The operator Domain extracts the “left” elements from a 
morphism and returns a selector that holds the result. The operator 
RestrictDomain restricts a morphism to a smaller element domain, 
which is specified by the selector passed as a second parameter of 
the operator. The Invert operator swaps the left and right elements 
of a morphism. The Compose (∗) operator is defined as the 
natural join of two morphisms, yielding another morphism. The 
TransitiveClosure operator on morphisms is specified using a 
recursive SQL definition. The Id operator creates an identity 
morphism over a given selector. 

The operator Subgraph(m, s) extracts from model m a subgraph 
induced by the nodes referenced in s. The literals attached to the 
nodes in s are also extracted from m. In the example of Table 1, 
the literal “PID” is not contained in the input selector s, but the 
edge 〈a2, name, “PID”〉 is nevertheless returned as part of the 
result. The extracted subgraph may not be a well-formed model. 

That is, it may not be fully connected and may not conform to its 
meta-model. 

The set operators Union (+), Difference (−), and Intersection 
(∩) are another three important primitive operators. We define 
these on models, morphisms, and selectors by the corresponding 
set operations on their representation as relations. For example,  
Union(x, y) :=  SELECT * FROM x UNION SELECT * FROM y 

Note that applying the set operations to well-formed models 
may produce a model that is not well-formed. 

 

 

Table 1: Definitions of primitive operators 
Definition Example 
Domain(map) := SELECT 
DISTINCT map.L AS V FROM 
map 

 
Domain(         ) = b2a2

b1a1
b2a2
b1a1

a2
a1
a2
a1

 

RestrictDomain(map, s) := 
SELECT * FROM map WHERE 
map.L IN s 

RestrictDomain(         , ) = b1a1 b1a1a1a1b2a2
b1a1
b2a2
b1a1

 

Invert(map) := SELECT map.R 
AS L, map.L AS R FROM map 

Invert(         ) = b2a2
b1a1
b2a2
b1a1

a2b2
a1b1
a2b2
a1b1

 
Compose(map1, map2) := 
SELECT DISTINCT map1.L, 
map2.R FROM map1, map2 
WHERE map1.R = map2.L 

Compose(         ,           ) = c1a1 c1a1c1b1 c1b1b2a2
b1a1
b2a2
b1a1

 

TransitiveClosure(map) := WITH 
RECURSIVE TC(L, R) AS (map 
UNION SELECT DISTINCT TC.L, 
map.R FROM TC, map WHERE 
TC.R = map.L)  SELECT * FROM 
TC  

 TransitiveClosure (         ) = cb
ba
cb
ba

cb
ca

ba
cb
ca

ba

 
 

Id(s) := SELECT s.V AS L, s.V 
AS R FROM s 

Id( ) = a2
a1
a2
a1

a2a2
a1a1
a2a2
a1a1

 
Subgraph(m, s) := SELECT * 
FROM m WHERE m.S IN s AND 
(m.O IN s OR isLiteral(m.O)) 

a2

Column
int

PID

type

name

SQLtypeSubgraph(M,           ) = 
Column

int

a2
Column

int

a2

 
where M = model of Figure 3 

 

 

 

The last two primitive operators are All and Copy. The 
operator All(m) returns a selector that contains only those nodes 
of m that denote the model elements of the model’s meta-model, 
such as tables or columns in the relational meta-model. For 
example, for the model of Figure 3 the operator All yields the 
selector {a1, a2, a3, a4} and filters out all auxiliary nodes, such 
as Table or PrimaryKey, that are used in the graph encoding. 

Frequently, it is important to ensure that a given node identifier 
is used in exactly one model. Furthermore, unique node IDs make 
it possible to refer to model elements across model boundaries. 
For these reasons, we use the operator Copy to create a copy of a 
model m in which the selected node IDs are replaced by new, 
uniquely created IDs. In the following definition of Copy, the 
function uniqueOID() generates a unique OID on each call, and 
the function ifNULL(x, y, z) returns y whenever x is a NULL 
value, z otherwise. If s=All(m), the output morphism m′_m is a 
bijection between All(m′) and All(m). 
Copy(m, s) := 
  m′_m = SELECT uniqueOID(), s.V FROM s; 
  m′ = SELECT ifNULL(T1.L, m.S, T1.L), m.P, 
                          ifNULL(T2.L, m.O, T2.L) 
          FROM m, m′_m as T1, m′_m as T2 
                      LEFT OUTER JOIN ON m.S=T1.R, m.O=T2.R; 
return 〈m′, m′_m〉; 
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4.2 Derived operators 
The derived operators are functional combinations of other 
operators. For example, consider the definitions shown below. 
operator Range(map) 
     return Domain(Invert(map)); 

operator RestrictRange(map, selector) 
     return Invert(RestrictDomain(Invert(map), selector)); 

operator Traverse(selector, map) 
     return Range(RestrictDomain(map, selector)); 

operator Restrict(map, m1, m2) 
     return RestrictRange(RestrictDomain(map, All(m1)), All(m2)); 

The Range of a morphism is obtained as the domain of an 
inverted morphism, by combining the primitive operators Domain 
and Invert of Table 1. Similarly, RestrictRange is specified in 
terms of the operator RestrictDomain by first inverting the input 
morphism, then applying RestrictDomain, and finally inverting 
the resulting morphism once again. 

The third operator, Traverse, was used in our motivating 
scenario for locating the d1 images of the elements deleted from 
the relational schema s1. To “traverse” the morphism, it is first 
domain-restricted by the selector, and the range of the restricted 
morphism is returned as output. 

The last operator, Restrict, confines the domain and range of a 
morphism to the elements of two models m1 and m2. Notice that 
the definitions of the derived operators above are expressed 
declaratively, allowing the implementations to be optimized. 

4.3 Extract and Delete 
Extracting and deleting portions of models are operations that are 
heavily deployed in metadata applications. To perform these 
operations, we propose the generic operators Extract and Delete. 
The operator Extract is applied as follows: 〈m′, m′_m〉 = 
Extract(m, s). The inputs are a well-formed model m and a 
selector s that identifies the set of nodes to be extracted. The 
output model m′ satisfies the following properties: (i) m′ contains 
all selected nodes, (ii) m′ is a well-formed model, (iii) m′ is an 
equally or less expressive model than m, i.e., m can represent all 
information of m′, and (iv) m′ is a “minimal” model that satisfies 
(i)–(iii). Condition (ii) may require that unselected “support” 
elements be included in m′. Condition (iii) can be characterized 
formally in terms of dominance and information capacity as 
suggested in [15,19]. The morphism m′_m is an injective function 
from All(m′) to All(m), i.e., each model element of m′ has at most 
one counterpart in m. 

In general, a model may contain implicit information, such as 
transitive relationships between model elements. In such cases, 
the result of Extract may need to make such information explicit. 
For example, consider a class diagram with three classes A, B, C, 
and two explicit subclass definitions: A is a subclass of B, and B 
is a subclass of C. Due to condition (iii), Extract(m, {A, C}) 
should return a class diagram in which A is defined as a subclass 
of C. This example illustrates that extraction is a rich operation, 
whose semantics and implementation may be non-trivial. 

Conceptually, the semantics of the operator Extract(m, s) can 
be realized using the following algorithm: 
1. Create a “closure” of m, i.e., a model m′ in which all implicit 

information of m is represented explicitly. 
2. Assign s′ = s, where s′ is a temporary selector. 

3. For each x in s′, extend s′ with elements needed to satisfy 
conditions (ii) and (iii). 

4. Apply 3 until a fixpoint is reached, i.e., s′ does not change. 
5. Extract subgraph t′ induced by s′ as t′ = Subgraph(m′, s′). 
6. Obtain a “cover” of t′, i.e., a minimal model t that is 

semantically equivalent to t′. 
7. Return Copy(t, All(t)) as result of extraction. Notice that the 

operator Copy (Section 4.1) returns a model and a mapping. 
 Deleting a selected portion of a model can be defined as 

extraction of the unselected portion. Thus, we define 
operator Delete(m, s) 
     return Extract(m, All(m) – s); 

Note that the nodes of s that do not represent the model 
elements of m, i.e., are not members of All(m), have no impact on 
the result of deletion due to applying All(m) – s. 

4.4 Match 
The purpose of Match is to uncover how two models 
“correspond” to each other. It takes two models as input and 
returns a morphism between them. Match is inherently heuristic. 
So like the previous literature on Match [23], we do not offer a 
formal definition of what constitutes a correct output morphism. 
In general, matching two schemas requires information that is not 
present in the schemas and cannot be fully automated. Hence, a 
human engineer needs to review and adjust the suggestions 
produced by an automatic procedure, either in a post-processing 
step or iteratively. 

4.5 Merge 
To combine two models into one, we utilize the operator Merge, 
applied as 〈m, m1_m, m2_m〉 = Merge(m1, m2, map). If the input 
models m1 and m2 are well-formed, Merge should produce a 
well-formed model m that (i) is at least as expressive as each of 
the input models, i.e., capable of representing the information 
contained in both models, and (ii) is “minimal”, i.e., deleting any 
element makes the model less expressive than one of the input 
models. The third parameter to Merge is a morphism map that 
describes elements of m1 and m2 that are equivalent and should 
be “merged” into a single element in m. The output morphisms 
m1_m and m2_m identify the counterparts of the elements of m1 
and m2 in the merged model m. 

The conceptual definition of Merge given above does not say 
anything about the naming and ordering of model elements. For 
example, it does not prescribe that the attribute names of m1 take 
precedence over those of m2, or the other way around. These 
details are not considered to be part of the semantics of Merge 
because they inherently involve end-user decision making. They 
are discussed in Section 5.3. 

5. IMPLEMENTATION 
In this section we discuss our implementation of the conceptual 
structures and operators presented above. We have found that the 
relations that were used in Section 3 as standard mathematical 
representation of graphs actually are a convenient implementation 
structure too. Our graph representation is based on the classical 
relational data model, in which node identifiers are constants that 
can be shared across models. We chose a relational approach 
instead of an object-oriented one (e.g., the one in [5]) to simplify 
the implementation and specification of the operators, which can 
often be done using SQL. Our relational graph model is based on 
the W3C’s Resource Description Framework (RDF). 



 

For encoding relational schemas, XML schemas, and SQL 
views as graphs we use the following approach. Our meta-model 
for relational schemas is based on OIM [8]. For example, the 
model elements of a relational schema comprise tables, columns, 
and constraints; a table contains an ordered list of columns, each 
of which has a type; tables and columns carry names; the 
constraints are specialized into primary key, unique key, non-null, 
or referential constraints; a referential constraint refers to two 
columns, one of which is a foreign key and the other is a primary 
key; etc. Our graph representation of XML schemas builds on 
XML DOM. The graph representation of SQL views that we 
deploy is comparable to a parse tree produced by an SQL 
processor (see Figure 12 in Appendix A). All clauses, statements, 
alias definitions, functional terms, etc. are represented as separate 
nodes. A view graph does not replicate the names of attributes 
and relations used in schemas, but refers directly to the respective 
nodes in the schema graphs. 

The output of the primitive operators is defined uniquely in 
Section 4, except for the operator All, which is implemented 
differently for each meta-model. For example, for relational 
schemas the implementation of All is specified as follows: 
All(m, s) := SELECT m.S FROM m WHERE m.P=type AND m.O IN 
{Table, Column, PrimaryKey, UniqueKey, NonNull, 
ReferentialConstraint} 

5.1 Extract and Delete 
To describe our implementation of the Extract and Delete 
operators we focus on the relational schemas. Consider the 
schema m shown on the left of Figure 7. The primary key 
constraints on PID and DID are depicted as horizontal bars 
underlining the respective attributes. The referential constraint is 
shown as a line connecting PRODUCTS.PID and O-
DETAILS.PID. Assume that in the graph representation of m the 
three constraints are denoted by the nodes c1, c2, and c3, 
respectively. For brevity, we henceforth refer to the graph nodes 
representing the attributes of m simply by using their names. 

Figure 7 illustrates six examples of extraction and deletion. 
The output morphisms m1_m, …, m6_m are omitted in the figure 
for compactness. The first example demonstrates extraction of the 
attribute PName yielding schema m1. Condition (ii) of Section 4.3 
ensures that m1 is a well-formed relational schema, i.e., attribute 
PName belongs to a relation and has a type specification. Applied 
to relational schemas, condition (iii) requires that the extracted 
schema contain all constraints present in the original schema that 
affect the selected elements. For example, extracting the attribute 
PRODUCTS.PID from m causes the primary key constraint c1 to 
be extracted as well, yielding the schema m2. Dropping c1 would 
violate (iii), since it would allow the attribute PID to contain 
duplicates and thus the original schema m could not represent all 
information of m2. Analogously, extracting O-DETAILS.PID 
from m (as schema m4) needs to preserve the referential constraint 
c2, which in turn requires the presence of PRODUCTS.PID and 
its primary key constraint c3. Condition (iv) prevents any other 
attributes from appearing in m4. 

 In our prototype, the implementation of operator Extract(m, s) 
for relational schemas is based on the conceptual algorithm of 
Section 4.3. Steps 1 (“closure”) and 6 (“cover”) are equality 
assignments. Step 3 of the algorithm is implemented as follows: 
• If s′ contains constraint x, add to s′ all attributes that participate 

in the constraint definition. 

• If s′ contains attribute x, s′ is extended to include (a) the 
enclosing relation of x, (b) the type definition of x, (c) the 
referential constraint or non-null constraint for x, (d) the 
primary key or unique key definition for x, but only when all 
attributes participating in the key definition are contained in x. 
In Figure 7, schemas m3 and m5 illustrate the extraction of 

nodes that denote constraints. To illustrate case (d), consider a 
relation P(Name, DOB, Addr) with a unique key constraint on 
(Name, DOB). According to the algorithm, Extract(m, {P.Name}) 
yields P(Name). The unique key constraint is not included since 
P.DOB is not selected. 

Notice that condition (iii) of Extract makes it impossible to 
delete a constraint on a relational attribute without deleting the 
attribute definition, or to delete the primary key attribute 
participating in a referential constraint without deleting its foreign 
key attribute. For example, consider schema m6 in Figure 7. 
Selecting PRODUCTS.PID and the constraints c1 and c2 is not 
sufficient for deleting this attribute, since O-DETAILS.PID is not 
selected. In [18], we present more flexible operators ExtractMin, 
DeleteHard, and DeleteSoft, which allow such deletions by 
providing fewer consistency guarantees than Extract and Delete. 

Extraction from XML schemas is implemented analogously to 
the above algorithm. Type references in XML schemas are treated 
similarly to the referential constraints in relational schemas. 
Currently, derived types are not supported. 

5.2 Match 
In our prototype, the Match operator takes as input two models of 
the same kind, e.g., two relational schemas, and returns as output 
a morphism. We implemented Match using the Similarity 
Flooding (SF) algorithm, a graph-matching algorithm presented in 
[17]. The SF algorithm exploits the structure of the graphs to be 
matched and performs especially well for detecting the 
differences between two versions of a schema, which is the case 
in our motivating scenario and many other metadata applications. 

The SF algorithm takes as input two graphs m1 and m2, and a 
set of initial similarity values between the nodes of the graphs, 
expressed as a weighted binary relation seed. Each pair 〈l, r〉 of 
seed carries a similarity value between zero and one. In a fixpoint 
computation, the algorithm iteratively propagates the initial 
similarity of nodes to the surrounding nodes, using the intuition 
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Figure 7: Examples of extraction and deletion from a 
relational schema m (output morphisms not shown). 



 

that neighbors of similar nodes are similar. The output of the 
algorithm is another weighted binary relation. 

In Section 3.2 we defined a morphism as a binary relation. To 
include weights in a morphism, we add to it a third attribute Sim 
that holds a similarity value for each pair of nodes. The primitive 
operators in Section 4.1 ignore this extra information. We 
implement the operator Match as 
operator Match(m1, m2, seed) 
    multimap = SFjoin(m1, m2, seed); 
    multimap = Restrict(multimap, m1, m2); 
    map = FilterBest(multimap); 
return 〈map, multimap〉; 

The operator SFjoin encapsulates the SF algorithm. As 
explained in [17], the multimap returned by the algorithm may 
contain a large fraction of the cross product of the nodes in m1 
and m2, and needs to be filtered. The operator FilterBest 
implements the filter suggested in [17], which exploits the stable-
marriage property. In addition to filtering, we restrict the result of 
the SFjoin operator to the nodes that represent the model elements 
of m1 and m2 using the operator Restrict (Section 4.2). The input 
morphism seed is typically obtained using another auxiliary 
operator NGramMatch(m1, m2), which computes the similarities 
of literals in m1 and m2 based on the number of n-grams that they 
have in common. Alternatively, seed can be obtained by 
composition of morphisms. If seed is omitted, NGramMatch is 
invoked in SFjoin by default. 

The above Match implementation returns both the filtered 
morphism map, and the unfiltered multimap. The morphism map 
can be adjusted by the engineer using a graphical tool by invoking 
the operator EditMap on the outputs of Match, e.g., as map = 
EditMap(map, multimap). The graphical tool allows the engineer 
to inspect all candidate matches suggested in multimap. 

The script used above for implementing the Match operator 
can be easily adapted to call other external schema matchers, 
which may deploy thesauri, analyze schema annotations, mine 
samples of instance data, reuse previous match results, etc., to 
reduce the manual post-processing effort. 

5.3 Merge 
We discuss our implementation of the Merge operator using the 
example in Figure 8. On the top, two sample models m1 and m2 
get merged into m (the output morphisms are omitted). The 
morphism map is depicted using directed arcs. The direction of 
each arc establishes a preference between two model elements; 
when collapsing the two elements, the target element is kept in 
the output m, whereas the source element is discarded. For 
example, the attribute PO.OrderDate is kept and ORDER.ODate 
is discarded. Such preferences are not part of the semantics of the 
Merge operator (Section 4.5), but are essential for practical 
deployment. The input morphism map contains an extra attribute 
Dir to hold the direction of the arcs (→ or ←). Before Merge is 
executed, a human engineer has a chance to specify the arc 
direction in a graphical tool by invoking the operator EditMap. 

The bottom of Figure 8 depicts m1 and m2 as graphs. For 
brevity, the arc labels, type edges, and literals are omitted 
(compare to Figure 3). Node x corresponds to relation ORDER, x1 
denotes ORDER.ODate, etc. The morphism map is {〈x, y, ←〉, 
〈x1, y2, →〉, 〈x2, z1, →〉}. 

To implement the Merge operator, we developed an algorithm 
called GraphMerge, which we describe below. Similar to [11,22], 

the algorithm consists of three conceptual steps: node renaming, 
graph union, and conflict resolution. 
1. In the first step, the graph nodes at the blunt ends of map are 

renamed to their targets at sharp ends, in both graphs m1 and 
m2. The result of renaming is shown on the bottom left of 
Figure 8. Nodes y, x1, and x2 of both graphs have been 
renamed respectively to x, y2, and z1. 

2. In the second step, we do a graph union, i.e., a set union of 
two sets of edges, and obtain the graph depicted on the bottom 
right of the figure. This graph is not a well-formed model, 
because the node z1, which used to represent the attribute 
CUST.Customer in m2, has now become an attribute of two 
different relations, x (ORDER) and z (CUST). 

3. Such conflicts are resolved in the third and final step of the 
GraphMerge algorithm. The above conflict is eliminated by 
deleting either the edge between x and z1, or the edge between 
z and z1, effectively making Customer an attribute of either 
relation CUST or relation ORDER in the merged schema. The 
choice is made by a human engineer. 

Step 3 is the costliest step of the algorithm, since it requires 
human feedback. To partially automate conflict resolution, we 
developed the following heuristic. Observe that in Figure 8 it 
seems more “natural” to keep the attribute Customer in relation 
CUST than to move it to ORDER. To generalize this observation, 
we track the origin of each edge in the merged graph, and assign 
to each edge a tag, such as +− or o+, which indicates whether 
each of the nodes incident at the edge was a source node of map 
(−), a target node (+) of map, or none of the two (o) (these are the 
only three possible cases assuming that source and target nodes of 
map are disjoint). For example, the edge 〈x, z1〉 obtained by 
renaming from 〈x, x2〉 is tagged with +−, since x is a target node 
and x2 is a source node of map. Analogously, the edge 〈z, z1〉 is 
tagged with o+, since z does not appear in map at all. 
If we knew that o+ edges are always preferred over +− edges, 
then, in a conflict 〈x, z1〉 could be eliminated without asking the 
engineer. We examined a variety of merge problems in the 
context of relational schemas, XML schemas, and SQL views, 
and established empirically a total order among all tag variations, 
which helps resolve many conflicts automatically in a way that 
matches human intuition. This order is shown in the middle right 
of Figure 8. Intuitively, edges between unchanged nodes (oo) are 
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Figure 8: Merging two sample schemas 



 

least likely to be rejected in a conflict, and thus have the highest 
priority. Similarly, edges incident at + seem more likely to be 
preferred than those incident at −. Thus, Steps 2 and 3 are realized 
as follows. First, all edges in the merged graph are sorted by 
decreasing priority. Then, iteratively, each edge is taken off the 
top of the sorted list and is appended to an (initially empty) graph 
G. If appending the edge violates model consistency, it is 
rejected. Once all edges have been appended, the engineer 
examines the result and the choices made heuristically, and makes 
any necessary adjustments. 

In the above description of the algorithm, we factored out an 
important aspect, the ordering of nodes within parent. To illustrate 
how we reestablish a correct order in the merged schema, 
consider Figure 8. Node y denoting the relation PO is renamed to 
x. Thus, when merging this node with the original x in m1, we 
move attributes y1 (Amount) and y2 (OrderDate) to the last 
position in the merged schema m. However, OrderDate 
“overrides” ODate, the first attribute in relation ORDER, and 
should remain at the first position. Hence, in schema m, the 
resulting order of attributes is OrderDate, CAddr, Amount. 

The GraphMerge algorithm is summarized below: 
 

 

Algorithm GraphMerge(m1, m2, map) 
  M := m1 ∪ m2; L := empty list;  G := empty graph 
  for each edge e in M do 
    rename nodes of e using map; assign tag to e; append e to L; 
  end for 
  sort edges in L by decreasing tag priority; 
  maxN := SELECT max(M.N) FROM M; 
  while L not empty do 
    take edge e=〈s, p, o, n〉 off top of L; 
    if tag(e) one of {“−o”, “−+”, “−−”} then 
      n := n + maxN; 
      if o is literal then continue loop end if 
    end if  
    if exists e′ = 〈s, p, o, n′〉 in G then 
       replace e′ in G by 〈s, p, o, min{n, n′}〉; 
    else if not conflictsWith(〈s, p, o, n〉, G) then 
              append 〈s, p, o, n〉 to G; end if 
    end if 
  end while 
return G 

 

 

The number maxN is obtained as the highest existing value of 
the ordinal property N in m1 and m2 (compare Section 3.1). It is 
used to move the nodes hanging off renamed nodes to the last 
positions. To test for renamed nodes, we check whether the 
corresponding edge tag starts with −, i.e., is one of −o, −+, or −−. 
The literals belonging to such renamed nodes are removed, to 
ensure that, e.g., the relation corresponding to node x in the 
merged graph of Figure 8 will be named “ORDER” and not “PO”. 
The function conflictsWith() checks whether appending a new 
edge to G causes a conflict. 

The GraphMerge algorithm can be used for various kinds of 
models by implementing the function conflictsWith() 
appropriately. In our prototype, we deploy the algorithm for 
merging relational schemas, XML schemas, and SQL views. For 
example, conflict detection for relational schemas checks that 
relations cannot contain relations instead of attributes, or that 
attributes cannot be shared among relations, etc. 

The Merge operator is implemented as follows: 

operator Merge(m1, m2, map) 
    G = GraphMerge(m1, m2, map); 
     s = SELECT L FROM map WHERE Dir=”→” UNION 
           SELECT R FROM map WHERE Dir=”←”; 
    m1_G = RestrictDomain(map, All(m1) ∩ s) + Id(All(m1) – s); 
    m2_G = RestrictDomain(map, All(m2) ∩ s) + Id(All(m2) – s); 
    〈m, m_G〉 = Copy(G, All(G)); 
return 〈m, m1_G ∗ Invert(m_G), m2_G ∗ Invert(m_G) 〉; 

Recall that Merge must also return morphisms from each of its 
input models to its output model. Thus, after applying 
GraphMerge to obtain the merged model G, we compute the 
morphisms m1_G and m2_G. The selector s contains all source 
nodes of map. For the example of Figure 8, we obtain m1_G as 
the union of domain-restricted map, {〈x1, y2〉, 〈x2, z1〉}, which 
maps each renamed m1 node to its new name, and the identity 
morphism on not renamed nodes, {〈x, x〉, 〈x3, x3〉}. Finally, G is 
copied to make the node IDs of the output model m unique, and 
the morphisms m1_G and m2_G are composed with Invert(m_G), 
so they range over m instead of G. 

The GraphMerge algorithm does not “invent” new model 
elements or establish new relationships between the existing 
elements. Therefore, the operator Merge as implemented above 
cannot reorganize schemas to resolve structural conflicts. For 
example, consider two XML schemas, S1 with element FullName 
and S2 with elements FirstName and LastName. Merging S1 and 
S2 should ideally create a new complex type Name with 
subordinate elements FirstName and LastName. Currently, we are 
working on addressing such structural conflicts by using n-way 
merges, in which intermediate schemas Sj are used for describing 
the desired structural transformations. 

In Section 4.5 we postulated two “semantic” conditions that 
Merge should satisfy. Our implementation does not automatically 
ensure that condition (i) holds. For example, the engineer might 
decide to “override” a non-null constraint on an attribute in one 
schema S1 by a primary key constraint of the other schema S2, in 
which case the output model would be less expressive (i.e. more 
constrained) than S1. Although this flexibility is often desirable in 
practice, we are working on a more restrictive version of Merge 
that always guarantees to satisfy (i) and (ii). 

6. PROTOTYPE 
In this section, we describe our prototype, called Rondo2, in more 
detail. Its architecture is shown in Figure 9. Its central component 
is an interpreter that executes scripts. The interpreter can be run 
from the command line, or invoked programmatically by external 
applications and tools. Its main task is to orchestrate the data flow 
between the operators. The operators can be defined either by 
providing a native implementation, or by means of scripts. For 
example, a native operator like ReadSQLDDL reads a text 
document containing the definition of a relational database and 
creates its graph representation, whereas WriteSQLDDL exports 
the graph back as text. Similarly, two native operators ReadDb 
and WriteDb load and store arbitrary graphs in an SQL DBMS. 
Native operators are defined in scripts using statements like 
alias ReadSQLDDL <Java class name>; 

Other operators that have been implemented natively include 
all primitive operators of Section 5, operators that launch GUIs 
for editing morphisms and selectors, such as EditMap or 
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EditSelector, schema translation and conversion operators, and 
the operators SFjoin and GraphMerge. All other operators, such 
as Range, Match, or Merge, are implemented by scripts presented 
in the previous sections. The specification of the commonly used 
native or derived operators can be grouped in a single script and 
utilized in other scripts using include statements. 

The interpreter provides a debugging facility that allows 
examining the execution traces of complex scripts, and supports 
flexible handling of the input and output parameters of operators. 
For example, if an operator returns more than one argument (as 
does our implementation of the operator Match), some of which 
are not used subsequently (as in script PropagateChanges in 
Section 2), they can be tacitly ignored. 

For minimizing the amount of GUI programming needed for 
visualizing various kinds of models, we used the following 
technique. We require an operator like WriteSQLDDL to output 
not only the textual representation of the model, but also a data 
structure that describes how the terms in the text relate to the 
model elements, or graph nodes. In this way the schema elements 
shown in Figure 11 enclosed in boxes are associated with the 
graph nodes representing those elements, and the GUI operators 
EditMap and EditSelector can be used in exactly the same way 
for relational schemas (Figure 11) or SQL views (Figure 12). 

At the current stage, our prototype supports the basic features 
of SQL DDL, XML Schema, RDF Schema, and SQL views, and, 
in preliminary form, UML. To introduce a new modeling 
language in the prototype, two steps are required. First, the 
import/export operators need to be provided, which ensure 
lossless round-tripping from the native format to graphs and back. 
Second, several callbacks need to be implemented for supporting 
the operators All, Extract, and GraphMerge. 

The code breakdown of the prototype is shown in Figure 10. A 
large share of the implementation effort was due to the graph 
APIs responsible for in-memory representation and manipulation 
of graphs and morphisms, and the database support. The key 
generic model-management functionality comprises less than 7K 
lines of code. It includes the interpreter (2050), primitive 
operators (660), SFjoin (1760) and GraphMerge (700) 
implementations, as well as the generic GUI operators (1400). 
The non-generic part is essentially divided among the code 
needed to support SDL DDL, XML schemas, and SQL views. 
The smallest portion of code is due to converters: XSD2SQL 
(260), SQL2XSD (250), View2Morphism (90), and 
Morphism2View (200). The compactness of the converters is 
mostly due to the fact that they operate on the internal graph 
representation using expressive queries. The total amount of code 
in the prototype is below 24K lines. The total scripting code 

developed so far is measured in hundreds of lines. The scenarios 
shown in the paper run in a few seconds on a 600 MHz laptop 
with 256 MB of memory.  

Further scenarios that we implemented include a reintegration 
scenario from the context of version management, iterative merge, 
a warehousing scenario, in which we extract a subset of the 
schema that is sufficient to answer a given set queries, and a view 
reuse scenario. Due to space limitations, we cannot present all of 
them in this paper. The view reuse scenario is in Appendix A. 
Among other aspects, it illustrates how views can be merged, 
presents the GUIs used in our prototype, and demonstrates the use 
of the operators Morphism2View and View2Morphism.  

7. RELATED WORK 
Many individual aspects of model-management have been studied 
extensively in the literature, which is too voluminous to cite here. 
We highlight only some key aspects. In previous work 
[2,5,11,12,13,19,20,22], schemas were typically represented as 
graphs whose nodes denote classes of entities that participate in 
various semantically rich relationships, such as is-a, has-a, 
functional dependencies, etc. In our approach, the graphs are 
syntactic structures, whose semantics is opaque to many 
operators. Morphisms have been used under varying names in 
many systems, e.g., as schema correspondences in Clio [21]. To 
our knowledge, selectors have been first introduced in this paper. 

Past papers on model management reified mappings as models 
[5,9,22]. One of the surprises of the present work is how much 
leverage one can get out of simple morphisms. However, 
morphisms clearly have their limits. Appendix A presents a 
scenario in which SQL views are used as reified mappings to 
describe instance transformations. Reified mappings add 
complexity to scripts and operator implementations. A general 
treatment of reified mappings is subject of our ongoing work. 

The operators discussed in [5] include Diff, Enumerate, and 
Apply. As explained in [18], in Rondo we implemented the 
operator Diff using extraction of the unmatched portion of one of 
the input models. Operators Apply and Enumerate are invoked by 
passing a selector to native Java code. The change propagation 
script of Section 2 is an alternative realization of the round-trip 
engineering scenario presented in [5]. 

A substantial effort has been devoted recently to schema 
matching. To minimize the amount of manual post-processing, 
existing schema matching tools deploy various techniques 
surveyed in [23], such as machine learning [4], etc. In our 
prototype, we use the structural matcher of [17], which is 
available for download from the authors’ website. Our definition 
of the Merge operator was influenced by the schema join 
operation of [1]. Schema merging has been further addressed e.g. 
in [11,19,22]. The algorithms suggested there can exploit rich 
relationship types that are not available in the GraphMerge 
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algorithm that we developed, and do not take the ordering of 
model elements into account. Our heuristic deployed in 
GraphMerge is only an initial step in the challenging research 
issue of semiautomatic conflict resolution.  

Schema translation across different modeling languages has 
been explored e.g. in [2,13]. The techniques presented there could 
be used for implementing a generic operator for generating one 
model from another. Currently, we are using a less general 
approach, in which each converter is implemented as a custom, 
non-generic operator.  

To our knowledge, the generic operators Extract and Delete 
have first been investigated and implemented in this paper. Our 
algorithm for Extract was inspired by the discussion of schema 
merging in [11]. 

The operators presented in this paper are mostly syntactic, just 
like the conceptual structures, and are expressed as graph 
transformations. Focusing on syntax allows the operators like 
Match or Merge to be implemented in a generic fashion for 
different kinds of models. However, understanding the semantics 
of these operators is crucial for assessing the correctness of 
model-management scripts. For example, the effect of applying 
“syntactic” operators to schemas ultimately needs to be expressed 
in terms of what these operators do to the instances of these 
schemas. Conditions (i)–(iv) for the Extract operator (Section 
4.3), or (i)–(ii) for Merge (Section 4.5) reflect the semantics of 
these operators to a limited degree. Algebraic and model-theoretic 
semantics of model-management structures and operators has 
been considered in more detail in [1,19], but is still a new and 
largely unexplored area. Currently we are working on an instance-
based characterization of morphism semantics, building on the 
approach of [16]. 

8. CONCLUSIONS 
In this paper we presented a programming platform for model 
management that implements all generic operators suggested so 
far in the literature. We explored the use of morphisms and 
selectors and introduced several novel generic operators. We 
discussed the operator semantics and the algorithms that we 
developed for implementing them. We showed that introducing a 
new model type like SQL DDL schemas in our prototype requires 
a moderate programming effort, but brings a large new class of 
model-management tasks within reach.  

The main conclusions that we draw are the following: 
1. One can solve practical problems using the model 

management operators. 
2. The solutions require a relatively small amount of code. 
3. One can get very far using a relatively weak representation for 

models and mappings. 
Our implementation experience, backed by the in-depth 
investigation of the individual operations by other researchers, 
suggests that the question raised in [7] is likely to have a positive 
answer, i.e., generic metadata management is in fact feasible. 
Even if we cannot handle subtle and complex cases, if we can 
solve a large class of non-trivial problems then we are offering a 
useful programming platform. Still, resolving the debate of [7] to 
the full extent can be done only by writing scripts for a substantial 
number of real applications and demonstrating that they work. 

Other hard challenges remain open. Examples are providing 
meaningful semantic constraints on operators and proving that 
certain syntactic transformations “play by the rules”. A salient 
non-technical challenge is acceptance by the developer 

community. As with each new programming paradigm, the 
willingness of engineers to learn a new way of approaching old 
problems is critical for success of generic model management. 
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A. VIEW-REUSE SCENARIO 
In this appendix, we examine another scenario, which illustrates 
the use of the operators presented in this paper for addressing a 
typical data warehousing task. Consider adding a new source S2 
to a data warehouse D. Assume that S2 is similar to an existing 
source S1. The morphism S1_S2 between the two source schemas 
is shown in Figure 11. Let an existing SQL view vS1_D describe 
how the instances of S1 populate D. The view vS1_D is depicted 
in the middle of Figure 12 (the relevant portion of the warehouse 
schema can be seen in the CREATE VIEW clause). Our goal is to 
reuse the view vS1_D for importing S2 data into D, i.e., creating 
the view vS2_D. Conventionally, this problem is solved manually 
involving a tiresome and error-prone renaming of the attribute and 
relation names of vS1_D based on the similarities between S1 and 
S2. In our prototype, we obtain vS2_D using the following script: 
1. S1_S2 = Match(S1, S2); 
2. S1_D = View2Morphism(vS1_D); 
3. S2_D = Invert(S1_S2) * S1_D; 
4. vS2_D′ = Morphism2View(S2_D); 
5. map = Match(vS2_D′, vS1_D, Invert(S1_S2)); 
6. vS2_D = Merge(vS2_D′, vS1_D, map + S1_S2); 

First, we match S1 and S2 to determine the correspondences 
between the schemas. As can be seen in Figure 11, some of the 
elements of S1 and S2 remain unmatched, whereas others, such as 
Department.DeptName are matched to two elements, 
Companies.name and Companies.legalEntity. In Step 2, we 
extract the morphism S1_D from the view definition vS1_D using 
a non-generic operator View2Morphism. For example, the 
morphism S1_D, which is omitted in the figures for brevity, 
associates the attribute Personnel.Pname with two attributes, 
Employee.EmpFName and Employee.EmpLName, etc. Next, we 
compute the morphism S2_D by composition. In Step 4, a 
“template” view definition vS2_D′ is generated from S2_D using 
another non-generic operator Morphism2View. It is shown on the 

S1 S2

 
Figure 11: Morphism between sources S1 and S2 



 

left of Figure 12. Morphism S2_D contains no information as to 
how the values of the attribute Personnel.Affiliation are obtained 
from Companies.name and Companies.legalEntity. Therefore, a 
functional term fct1 is generated in vS2_D′ as a placeholder. 

In Step 5, the template vS2_D′ and the existing view vS1_D are 
matched, using as a seed the morphism between S1 and S2. The 
resulting morphism, after minor manual corrections, is depicted in 
Figure 12. Finally, in Step 6 both view definitions are merged to 
obtain vS2_D, shown on the right. Notice that the function symbol 
fct0 has been correctly replaced by the nested concatenation, 
whereas fct1 was left as is. The unmatched WHERE clause was 
borrowed from vS1_D; the attribute references have however been 
correctly replaced by Companies.cid and Consultants.cid. To 
achieve that, the morphism map passed to Merge is extended to 
include S1_S2. The heuristic deployed in the GraphMerge 
algorithm produces vS2_D fully automatically, due to relative 
simplicity of the input views. 
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Figure 12: Merging two SQL views 
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