
1

ModelGen

1. ModelGen, before it was time, 1995-1997
2. ModelGen, an idea, January 2003
3. ModelGen, a partial implementation, November 2003

4/12/2003

A Multiple-Data-Model Approach to the
Management of Heterogeneous Schemes

Paolo Atzeni, Riccardo Torlone

ca 1996

4/12/2003 P. Atzeni 3

Overview

• Goal
– a model-independent data dictionary
– a component of an integrated (flexible, open) CASE tool

• Motivation
– many data models exist

4/12/2003 P. Atzeni 4

Many models

• with different features and goals
– semantic models and logical models:

• E-R, functional, (conceptual) object
• relational, network, object

– general purpose models (for all seasons) and problem
oriented models (for specific contexts: DW, statistical,
spatial, temporal)

• Variations of models
– models with different levels of abstraction
– versions within a family …

4/12/2003 P. Atzeni 5

The E-R model

• It is not really a model, but a family of models:
– choose n books (or methodologies or tools);
– each will claim that adopts the Entity-Relationship model;
– you will find m > n versions of the E-R model

• Indeed:
– Binary vs n-ary
– With or without attributes for relationships
– With or without external identification
– With or without generalizations (total vs partial, overlapping

vs disjoint, …)

4/12/2003 P. Atzeni 6

Why should we handle different models

• a methodology is chosen and a independent tool is available,
and their models differ:
– each CASE tool uses a different model
– each methodology uses a different model
– models in tools and methodologies are often not related (the

``impedance mismatch'')
• designers of a complex project work with their favorite models,

but their work has to be exchanged, reused and integrated;
• specific sub-problems are handled with different models,

specific for each
• the results of independent design activities have to be integrated

2

4/12/2003 P. Atzeni 7

An ideal goal

• An environment that:
– allows the definition of any possible model
– given two models M1 and M2, and a scheme S1 of M1 (the

source scheme and model), generates a scheme S2 of
M2 (the target scheme and model), corresponding
(equivalent) to S1

4/12/2003 P. Atzeni 8

Is the goal realistic?

• what does “any possible model'' mean?
• what does “corresponding'' (or “equivalent'') mean?

4/12/2003 P. Atzeni 9

What does “any possible model'' mean?

• each model has its own constructs
• each model gives the definition (the semantics) of the constructs

in a different way
• each model introduces specific features that have no

counterpart in other models

4/12/2003 P. Atzeni 10

Could there be a “universal'' description of
models?

• first order logic?
• set theory?

• maybe, but how could we handle the descriptions?

4/12/2003 P. Atzeni 11

What does “equivalent” mean?

• Various notions of equivalence have been proposed, different
from one another

• Given a notion of equivalence, there are cases where, fixed the
models and the source scheme, there is no equivalent scheme
in the target model; example:
– the source scheme is an E-R model with cardinality

constraints and the target E-R model without the
• Also there are cases where there are two or more

“corresponding'‘ target schemes; example:
– the source scheme is an E-R model with is-a relationships

and the target an E-R model without them

4/12/2003 P. Atzeni 12

However, the situation is not that bad

• The constructs in the various models are rather similar: they can
be classified into a small number of categories
(“metaconstructs'')

• That is:
a metamodel approach

3

4/12/2003 P. Atzeni 13

E-R model (a version)

• entity: objects in the domain of interest
• relationship: pairs (or n-tuples) of entities
• domain: set of values
• attribute : function from entities (or relationships) to domains

4/12/2003 P. Atzeni 14

Relational model

• domain : set of values
• relation : subset of the cartesian product of domains (n-tuples) of

values

4/12/2003 P. Atzeni 15

Functional model (a version)

• domain : set of values
• object in the domain of interest
• function : from objects to objects or domains

4/12/2003 P. Atzeni 16

A classification (Hull & King, 1987)

• Lexical types : sets of printable values
– Domain

• Abstract types
– Entity type , set of objects in the world
– Class , set of objects in the system

• Aggregation : a construction based on (subsets of)
cartesian products

– Relationship in the E-R model
– Relation in the relational model

• Function
– Attribute in the E-R model
– Function in a functional data model

• Grouping
• Hierarchies

4/12/2003 P. Atzeni 17

Summarizing

• We can fix a set of metaconstructs of interest (each with a set
of possible variants):

– lexical, abstract, aggregation, function, ...
– the set can be extended if needed, but this will not be

frequent
• Then a model can be defined in terms of the metaconstructs its

constructs refer to

4/12/2003 P. Atzeni 18

Some models

• The relational model
– a lexical construct, called domain
– an (n-ary) aggregation construct, called relation

• (A simple version of) the E-R model
– a lexical construct, called domain
– an abstract construct, called entity
– an (n-ary) aggregation construct, called relationship
– a (monovalued monadic) function construct (from an entity or

a relationship to a domain)

4

4/12/2003 P. Atzeni 19

Translations in this framework

• The constructs corresponding to the same metaconstruct (e.g.
entity in the E-R model and class in an object model both
corresponding to abstract) have the same "meaning''

• Translations can refer to metaconstructs, rather than to
constructs (which are model specific)

• A translation from a source model to a target model would have
to replace constructs in the source (and not in the target) with
constructs in the target

• Translations can be built by composing elementary
transformations
– each of them would eliminate some constructs (or “patterns”

thereof) and possibly introduce new ones
– a translation from a source model to a target one would

eliminate some constructs and introduce new ones

4/12/2003 P. Atzeni 20

Elementary steps

• There can be a set of predefined basic translations
• They are assumed to be correct
• We have studied properties of compositions of basic

translations:
– a correct translation from M1 and M2 produces schemes

that contain only constructs that are allowed in M2

4/12/2003 P. Atzeni 21

Examples of basic translations

• eliminate n-ary aggregations; replace them with binary ones
(and abstracts)

• eliminate binary aggregations; replace them with functions
• eliminate functions to abstracts; replace them with aggregations
• eliminate complex attributes; replace them with simple attributes

and abstracts

4/12/2003 P. Atzeni 22

Translations, how many?

• If we have n different models, how many translations do we
need?
– apparently, n2

– in fact, only n, that is, one for each model, which eliminates
the constructs that are not allowed

4/12/2003 P. Atzeni 23

The Supermodel

• A model that includes all the constructs (in their most general
forms)
– each translation from the supermodel SM to a target model

M eliminates all constructs that are not allowed M
– therefore, each translation from SM to M is also a (possibly

redundant) translation from any other model to M

4/12/2003 P. Atzeni 24

Actors on the scene (and behind it)

• designers : define schemes within existing models
• model engineers : define models by using metaconstructs and

generate (and modify) translations by composing basic
translations

• metamodel engineers: extend the whole system, by defining
new metaconstructs and the corresponding basic translations (a
nontrivial task)

5

ModelGen e EDBT'96

Paolo Atzeni, Phil Bernstein

4/12/2003 P. Atzeni 26

The goal

• An automated procedure is presented in [Atzeni & Torlone 96]
for generating a script of transformations that translates a
source schema in one metamodel into a target schema in
another metamodel.

• We want to develop this work into a complete specification and
implementation of the ModelGen operator proposed in
[Bernstein 03].

4/12/2003 P. Atzeni 27

Specific objectives

• have the script generate a well-behaved model management
mapping from the source schema to the target schema

• allow users to customize the transformations that are produced
• allow users to customize the target schema and mapping
• ensure that the generated schemas and mappings can be used

at least for the scenarios of [Bernstein 03]
• generate instance-level semantics for the script, which

translates instances of the source schema into instances of the
target schema.

4/12/2003 P. Atzeni 28

Strategy

• bottom-up, by evaluating ER-to-SQL and SQL-to ER
translations.

• translations written in Datalog, which enabled us to write
schema translations in a (precise) textual form

• we checked that we can produce rules that do the work we
expect of ModelGen, and we did walkthroughs of those rules for
some small prototypical examples.

• we have developed sufficient confidence in the examples that
we are now ready to address the overall goal, namely, using the
framework of [Atzeni & Torlone 96] to produce a specification
and implementation of ModelGen.

• we have therefore started translating the most general
metamodel, i.e. supermodel, of [Atzeni & Torlone 96] into the
relational and datalog framework that we are currently pursuing.

4/12/2003 P. Atzeni 29

"Results"

• metamodels for ER (various versions), relational (SQL), ADM
• mapping rules for tranforming an ER schema into a SQL

schema
• mapping rules for (reverse engineering) a SQL schema into an

ER schema
• mapping rules from ADM to ER (not yet the recursive ones, but

reasonable)
• a description of the Supermodel, which is a metamodel that

generalizes all of the metamodels of interest, based on the
framework of [Atzeni & Torlone 96].

4/12/2003 P. Atzeni 30

"Open issues"

1. A better understanding of the notion of mapping is needed in
order to reconcile the "CIDR" framework with the "EDBT" one

2. Instance level tranformations are by no means trivial in the
"automatic generation" framework, but they would be essential
for understanding what mappings are in a general setting (for
example when dealing with complex views); however, one could
aim at the "syntactic verification" of instance level
transformations (that is, check that what they generate is
coherent with the metamodel level; Torlone proposed to use
"simulation"; much work is probably needed)

6

4/12/2003 P. Atzeni 31

"Open issues", 2

• A notion of completeness would be needed: let us say that
– syntactic correctness means that a transformation produces

only constructs that are allowed in the target model
– semantic correctness means that the transformation

produces "equivalent" schemas
– completeness could mean that the translation uses the

allowed constructs in the "best" way (e.g.: generates ternary
relationships if the model allows)

4/12/2003 P. Atzeni 32

Open issues, 3

• Customization is a way open problem, and could be
implemented in various way (all offered at the same time):
– at the metamodel level (all constructs of a given family)
– at the schema level (a specific piece gets modeled in a

certain way)
– by choosing among alternatives, or by rewriting (in the latter

case, which would be the language for rewriting?)

ModelGen: an implementation

Paolo Atzeni, Paolo Cappellari

4/12/2003 P. Atzeni 34

"Results" in January

• metamodels for ER (various versions), relational (SQL), ADM
• mapping rules for tranforming an ER schema into a SQL

schema
• mapping rules for (reverse engineering) a SQL schema into an

ER schema
• mapping rules from ADM to ER (not yet the recursive ones, but

reasonable)
• a description of the Supermodel, which is a metamodel that

generalizes all of the metamodels of interest, based on the
framework of [Atzeni & Torlone 96].

4/12/2003 P. Atzeni 35

Problems

• Rules were written in a "Datalog with OID invention"
– rather high level
– not implemented (Bernstein tried a ConceptBase

implementation, but did not work well)
– control over rule applications would be needed

4/12/2003 P. Atzeni 36

Solution idea

• rules written in SQL
• Skolem functions stored in relational databases,

– OID invention simulated via "autoincrement" fields
(alternatives exist)

• control could be separated from rules (and we ignore most of
the sophisticated aspects for now: choosing rules, verifying
"soundness", minimality, …)

• experiment in March, 2003
– relational database
– SQL rules

7

4/12/2003 P. Atzeni 37

Problems with the solution idea

• Rules have a lot of "bureaucracy"
– source and destination scheme
– Skolem rules and Skolem tables

• There is even more bureaucracy in the supermodel environment
– we need copies between the supermodel and individual

models and vice versa
– we also need "copies" within the supermodel if we have

elementary rules that handle single constructs (e.g. if we
eliminate n-ary relationships, entities and their attributed had
to be simply copied)

4/12/2003 P. Atzeni 38

Towards a more feasible solution

• The goal:
– remove the bureaucracy
– "automate" as much as possible

4/12/2003 P. Atzeni 39

Remove the bureaucracy

• We would like rules that are as close as possible to the Datalog
form

Rel_ColumnOfTable(OID(aOID), OID(eOID), AttrName, nullable) :-
ER_AttributeOfEntity(aOID, AttrName, eOID, nullable)

INSERT INTO Rel_ColumnOfTable (
columnOID, name, tableOID,
isNullable, isKey, schemaOID)

SELECT var2.columnOID ,
var1.name ,
var3.tableOID ,
var1.isNullable,
var1.isID,
?1 AS schemaOID

FROM ER_AttributeOfEntity var1,
Rel_ColumnOfTable_SK var2,
Rel_Table_SK var3

WHERE var1.attributeOID = var2.attributeOID
AND var1.entityOID = var3.entityOID
AND var1.schemaOID = ?2
AND var2.schemaOID = ?1
AND var3.schemaOID = ?1

INSERT INTO Rel_ColumnOfTable (
columnOID, name, tableOID,
isNullable, isKey)

SELECT columnOID_1 (var1.attributeOID) ,
var1.name ,
tableOID_1(var1.entityOID) ,
var1.isNullable,
var1.isID

FROM ER_AttributeOfEntity var1

4/12/2003 P. Atzeni 40

Remove the bureaucracy, 2

• Skolem functors can be automatically generated
– expansion of the term
– addition of variable in the range list
– addition of condition

• This is feasible if we have a description of Skolem functions
• If so, we also have that

– rules that insert tuples in Skolem tables can be generated

4/12/2003 P. Atzeni 41

Remove the bureaucracy, 3

• "Copy rules" can also be automatically generated if we have a
description of the models

4/12/2003 P. Atzeni 42

The dictionary

• MSM: a description of the supermodel (the "metasupermodel")
• SM: the supermodel (as described by MSM)
• MM: a descritpion of the models (the metamodel), each defined

in terms of MSM constructs
• M: the models (as described by MM)

8

4/12/2003 P. Atzeni 43

MSM

SM_table

SM_attribute

SM_SkolFun

SM_SkolArg

SM_ref

4/12/2003 P. Atzeni 44

MM

M_table

M_attribute

M_ref

Model

… ?

… ?SM_table

SM_attribute

M_ref

4/12/2003 P. Atzeni 45

The dictionary, in relational terms

• MSM_
– The supermodel dictionary (4-5 tables, including MSM_Tables)

• SM_
– The supermodel tables (a table for each tuple of MSM_Tables)

• Models
– A tuple for each model

• MM_
– The dictionary of models, similar to and related to MSM

• Tuples in MM tables are, for each model "subsets and
projections" (or joins, in the future) of those in MSM, plus
references to Models

• M_XX_
– Model tables (a table for each tuple in MM_tables)

4/12/2003 P. Atzeni 46

Lo strumento: definizione di un modello

• Inserimento di tupla in Models
• “popolamento” di MM con riferimento da una parte alla tupla

inserita in Models e dall’altra a costrutti del SM (cioè a tuple in
MSM)

• Generazione di M_XX a partire da MM

4/12/2003 P. Atzeni 47

Lo strumento: il processo di traduzione

1. Traduzione (o meglio, copia) verso il SM
2. Traduzione vera e propria (applicazione di sequenze regole che

eliminano i costrutti non ammissibili nel modello target
sostituendoli con costrutti previsti); richiede:
1. una disponibilità di regole di traduzione elementari
2. una capacità di “ragionamento” riguardo alla selezione delle

regole
3. la capacità di applicare sequenze di regole

3. Traduzione (o meglio copia) verso il modello target

4/12/2003 P. Atzeni 48

Note

• Definizione modelli
– passi 1 e 2: serve sostanzialmente una procedura interattiva (e una

batch) di inserimento dei dati; essenziale è la verifica (esplicita o
implicita) dei vincoli di riferimento;

– passo 3: procedura di generazione (genera istruzioni SQL di
creazione e le esegue)

• Traduzione
– passi 1 e 3: ok o quasi (unici dubbi sul supermodello sofisticato,

che potrebbe essere rinviato)
– passo 2: è il cuore del sistema

• 2.1 richiede la scrittura di regole, e qui la rappresentazione ad
alto livello è essenziale

• 2.2: è necessario individuare modalità di descrizione sintetica
delle regole e dei modelli

• 2.3: è sostanzialmente disponibile

9

4/12/2003 P. Atzeni 49

More …

• Gestione del test
• Salvataggio e ripristino
• Report
• Interfaccia grafica …

