
MDM: a Multiple-Data-Model Tool for the Management of
Heterogeneous Database Schemes*

Paolo Atzeni

Dipartimento di Informatica e Automazione

Universith di Roma Tre

Via Vasca Navale, 84 - 00146 Roma, Italy

atzeniQinf.uniroma3.it

Abstract

MDM is a tool that enables the users to define schemes
of different data models and to perform translations of
schemes from one model to another. These functionalities
can be at the basis of a customizable and integrated CASE
environment supporting the analysis and design of infor-
mation systems. MDM has two main components: the
Model Manager and the Schema Manager. The Model
Manager supports a specialized user, the model engineer,
in the definition of a variety of models, on the basis of a
limited set of metaconstructs covering almost all known
conceptual models. The Schema Manager allows design-
ers to create and modify schemes over the defined models,
and to generate at each time a translation of a scheme into
any of the data models currently available. Translations
between models are automatically derived, at definition
time, by combing a predellned set of elementary trans-
formations, which implement the standard translations
between simple combinations of constructs.

1 Introduction

With respect to the representation of data in the anal-
ysis phase (the conceptual design activity [5]), current
CASE tools usually offer one specific data model. Al-
though usually these models are presented as the “Entity-
Relationship model” [6], it is in fact the case that there
are many versions of it, and each tool adopts a different
version. A similar observation can be made with respect
to methodologies: each of them adopts a different con-
ceptual model. As a consequence, it is common to have a
context where different (maybe similar) data models have
to be handled at the same time, for a number of different
reasons: (i) a methodology is chosen and an independent
tool is avalaible, and their models differ; (ii) the various
designers of a complex project prefer to work with their fa-
vorite models, but their work has to be exchanged, reused

l This work was supported by Universit& di Roma Tre, MURST,
and Consiglio Nazionale delle Flicerche.

permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers. or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD ‘97 ALUSA
0 1997 ACM O-89791-91 I-4/9710005...$3.50

528

Riccardo Torlone

Dipartimento di Informatica e Automazione

Universita di Roma Tre

Via Vasca Navale, 84 - 00146 Roma, Italy

torloneQiasi.rm.cnr.it

and integrated; (iii) specific subproblems are handled with
different models, suitable with their characteristics, and
(iv) the results of independent design activities have to be
integrated (a need that may arise when companies merge
or get involved in a federated project).

We believe that a natural way to try to overcome this
problem is the design of eztensible systems that allow the
user to customize the environment with the definition of
specific models and the support in the translation between
them. Recently, we have proposed a formal framework
that allows the specification of conceptual data models by
means of a suitable formalism called a metamodel[2,3,4].
Then, for any two models MI and & deflned in this
way, and for each scheme Sr (the source scheme) of Ml
(the source model), it is possible to obtain a scheme Sz
(the target scheme) that is the translation of Sr into MS
(the target model). The proposal is based on two major
observations, as follows.

First, it has been noted that the constructs used in
most known models can be classified by means of a rather
limited set of categories [s] (lexical type, abstract type,
aggregation, generalization, function and a few others).
Therefore, a metamodel can be defined by means of a
basic set of metaconstructs, corresponding to the above
categories. In this framework, a model can be defined by
indicating which metaconstructs (or versions thereof) its
constructs correspond to. It can be observed that this
approach is not universal, as it does not cover all possible
models. However, it is easily extensible: should a model
with a completely new construct be proposed, the corre-
sponding type could be introduced in the metamodel, and
then used in the definition of the model.

The second point is that there is no clear notion of
when a translation is correct. In fact, a lot of research
has been conducted in the last decades on scheme equiv-
alence with reference to the relational model [l, 7, 121
or to heterogeneous frameworks [9, 10, 111, but there is
no general, agreed definition. Therefore, we followed a
pragmatic approach. We assume that the constructs that
correspond to the same metaconstruct have the same se-
mantics, and then we define translations that operate on
individual constructs (or simple combinations thereof) as
follows: for each construct x of the source scheme such
that there is no construct of the same type in a target
model M, we try to replace x by other constructs which
are instead allowed in M. This work is supported by
the use of a predeIlned set of elementary transformations,
which implement the standard translations between con-

Mode1 Dictionary

Model Engineer ’
I I

f
Lillrary of

4--) UI SchemaManager v Schema Translations
Translator

Designers

Schema
Dictionary

structs studied in the literature [5] (which we assume to
be correct by definition). Thus, a complex translation can
be obtained just as composition of elementary steps.

As a preliminary step, we have developed a graph-
theoretic framework that allows us to define in an uni-
form way schemes and models [3]. Using this description
we have been able to define and characterize desirable
properties of translations, and to develop general method-
ologies for the automatic generation of translations that
satisfy such properties.

On the basis of these results, we have defined and built
a first prototype of the system, over which we are test-
ing the various features of the approach in an important
case which involves the various versions of the Entity-
Relationship model and a few representatives of other
categories of models. The tool is implemented in Visual
C++ under Windows95, and it is currently being ported
to Motif in a Unix environment. In the next section we
describe the architecture of the tool and the functions of
the variuos modules. In Section 3, we briefly discuss an
example.

2 A description of the tool

On the basis of theoretical results and practical algo-
rithms described in [3, 41, we have designed a tool, called
MDM (Multiple Data Models), for the management of
multiple models and the translation of schemes.

The architecture of the MDM tool is shown in Figure
1. Before examining its main components, it is useful to
discuss the classes of specialists involved with the various
activities. The main user of the tool would be a tradi-
tional designer (or analyst) interested in describing the
data of interest for an application by means of a specific
model, among those available. The current set of mod-
els is managed by a special user, called the model engi-
neer, who has the responsibility of setting the framework.
He/she defines (and modifies) models by using metacon-

Figure 1: The architecture of the MDM tool

structs and takes care of the translations between models
(with the support of tool, as we will see). Finally, we could
envision the role of a metamodel engineer, responsible for
extending the whole system, with the addition (or mod-
ification) of metaconstructs and basic translation steps.
Given the specificity of this last role, the tool provides a
direct support only for users in the first two classes.

The main operations offered by the tool to designers
and model engineers are the following:

1. The definition of a model by means of a (menu-
driven) “Model Definition Language”. This lan-
guage has been designed according to a metamodel
that involves (at the moment) the following meta-
constructs: lexical types, abstract types, functions,
binary and nary aggregations and generalizations
between abstracts. The task is to be conducted by
the model engineer, whose work is supported by a
number of menus (for choosing the appropriate type
of construct between the available metaconstructs
and specifying its features). When a new model M
is defined, the system automatically generates a de-
fault translation from the “supermodel” to M (we
elaborate on this aspect shortly). This translation
is later used to translate any scheme to the model
M.

2. The specification of a scheme belonging to a model
by means of a menu-driven “Schema Definition Lan-
guage”. This language is automatically provided
with the definition of a model. Specifically, after
the definition of a new model, designers can select
this model from a menu and build a new schema by
choosing among the constructs available for it. This
work is supported by a fexible graphical interface.

3. The request for a translation of a scheme into a
specific target model. The system satisfies the re-
quest by applying a customized version of the de-
fault translation associated with the target model.

529

This task is also autonomously conducted by design-
ers.

Let us briefly illustrate the main components of the
MDM tool.

User Interface. This part allows the interaction with the
system by means of a graphical (as well as textual) lan-
guage. At the moment the interface is quite primitive
but we are currently testing a tool that allows the editing
and the automatic layout of complex diagrams. With this
tool, it is possible to customize edges and nodes. This is
very useful in our context ,since, using this feature, the
users can also specify their preferred diagram style.

Model Manager. It takes as input data model specifi-
cations done with respect to the metamodel, and stores
them in a Model Dictionary. The Model Dictionary con-
tains all the data models defined by the model engineer
together with a special model (the supermodel), which
subsumes every other model. The supermodel is auto-
matically generated by the Model Manager by finding
the least upper bound of the models currently stored in
the Model Dictionary [3]. This model is the model of ref-
erence for generating schema translations. The system is
able to store, together with a model description, further
informations like special constraints on the application of
the constructs in a specific model.

Schema Manager. In a similar way as the Model Man-
ager, this component takes as input the specification of a
new scheme S of a model M stored in the Model Dictio-
nary, checks whether S belongs to the model h4 and, if so,
stores Sin a Schema Dictionary. The Schema Dictionary is
the repository of schemes and can store different versions
of the same scheme obtained after modifications and/or
translations of the original scheme. Again, additional in-
formation can be stored together with a scheme, such as
integrity constraints that cannot be expressed with the
scheme itself.

Translation Generator. This module generates new trans-
lations between pairs of models, on the basis of a set of
predehned basic translations permanently stored in the
Library of Translations. The computed translations can
be modified by the model engineer. All the translations
generated by this module can be stored (according to a
request done by the Model Manager) in the Library of
Translations (for later use).

Schema Translator. It actually executes translations of
schemes, by applying the appropriate translation gener-
ated by the Translation Generator, to a source scheme
received by the Schema Manager. The output scheme
is returned to the Schema Manager to be stored in the
Schema Dictionary or displayed through the user inter-
face.

The various components of MDM co-operate as fol-
lows.

1. When the model engineer defines a new model M,
the Model Manager first stores it in the Model Dic-
tionary and then checks whether the supermodel
subsumes the new model or not. In the first case,
the Model Manager sends a request to the Trans-
lation Generator for the generation of the default
translation from the supermodel to M, which will

530

be stored in the Library of Translations. In the lat-
ter case, the Model Manager generates a new super-
model that replaces the previous one in the Model
Dictionary. Then, a request is sent to the Trans-
lations Generator for generating translations from
the new supermodel to every other model stored in
the Model Dictionary. Those new translations re-
place the old default translations in the Library of
Translations.

When a designer defines a new scheme S for a model
M, the Schema Manager verifies whether S is al-
lowed in M, by matching S with the definition of
M, which is stored in the Model Dictionary. If the
matching is successful, the scheme can be stored in
the Schema Dictionary. Schemes can also be modi-
fied (by saving old versions if necessary) and deleted.

When a designer submits a request for the trans-
lation of a scheme S from a source model M, to a
target model Mt, the Schema Translator loads from
the Library of Translations, through the Transla-
tion Generator, the default translation for the model
Mt. This translation is certainly correct, but, be-
cause it is a translation from the supermodel to Mt
and the supermodel is in general more complex than
M,, it may include redundant steps. Therefore, the
translation is first optimized by deleting unneces-
sary steps and then applied to S. The result is dis-
played and eventually stored in the Schema Dictio-
nary.

If, during the various activities, it turns out that the
metamodel is not enough expressive for describing a new
data model or that the basic translations used to build
more complex translations are not sufficient or satisfac-
tory, then the metamodel engineer has to be called for
extending the tool.

We are currently testing the capabilities of the tool in
a restricted but important case. We have taken in account
the various versions of the Entity-Relationship model that
can be found described in the literature or implemented in
the systems (with or without generalizations, with binary
or nary relationships, with simple or composite domains,
and so on), a version of the Functional Model and the Re-
lational Model. At the moment, we have stored 10 models
and 25 basic translations (among them: the translation
of nary relationships into binary ones, the translation of
generalizations into binary relationships, the elimination
of composite attributes, the translations of functions be-
tween abstracts into relationships, and so on). In this
situation, the tool is able to translate schemes from each
model to any other thus confirming that the provided set
of basic translations is indeed complete.

3 An example of application

In this section we briefly present a practical example of
application of the tool. We will consider two models M.
and Mt (both of them are indeed different versions of
the ER model) and derive a translation from MS to Mt.
Then, this translation will be applied to a specific schema
of M,. The model Mt is a version of the ER model
that involves binary relationships and entities with simple
and/or multivalued attributes (that is, attributes whose
instances are sets of values). The model MS is instead

Figure 2: A schema for the model M,

a version of the ER model involving nary relationships,
entities with simple and/or composite attributes (that is,
attributes whose instances are sets of tuples of values),
and is-a relationships between entities. The translation
from M, to Mt requires the following basic steps:

1. The translation of nary relationships into binary
ones;

2. The translation of is-a relations between entities
into relationships on entities (actually, other trans-
lations could be applied here);

3. The translation of composite attributes with only
one component into multivalued attributes;

4. The translation of composite attributes into new en-
tities;

5. The translations of functions between entities into
relationships on entities (this function is needed to
eliminate a side-effect produced by step 4 as clarified
below).

Now consider the scheme of the model M, in Figure 2.
The scheme represents persons and employees. Employees
have a salary and work in departments having a name.
Tasks with specific goals, to be executed within a certain
date, are assigned to employees. This is represented by
means of a composite attribute of the entity Employee.

By applying the translation described above, we ob-
tain the scheme reported in Figure 3. Actually, the first
step does not produce any effect on the scheme since the
relationships in original scheme are already binary (an
optimization task before the execution of the translation
in fact eliminates useless steps such as this). The second
step translates the is-a relation between the entities Per-
son and Employee in a one-to-one relationship on them.
The third step translates the composite attribute Phones
of the entity Person in a multivalued attribute, whereas
the fourth step translates the composite attribute Tasks
of the entity Employee in a new entity. This step gener-
ates an undesired side-effect: a function from the entity
Employee to the entity Tasks, which is a construct not
allowed in the target model. This construct is eliminated
in the last step by replacing it with a one-to-many rela-
tionship between the involved entities.

Figure 3: The result of a translation into the model M,

References

PI

PI

[31

[41

[51

[cl

PI

PI

PI

PO1

Pll

WI

P. Atzeni, G. Ausiello, C. Batini, and M. Mosca-
rim. Inclusion and equivalence between relational
database schemata. Theoretical Computer Science,
19(2):267-285, 1982.

P. Atzeni and R. Torlone. A metamodel approach for
the management of multiple models and the transla-
tion of schemes. Information Systems, 18(6):349-362,
1993.

P. Atzeni, R. Torlone. Schema Translation between
Heterogeneous Data Models in a Lattice Framework.
In Sixth IFIP TC-X Working Conference on Data Se-
mantics (DS-6), Atlanta, pages 218-227, 1995.

P. Atzeni, R. Torlone. Management of Multiple Mod-
els in an Extensible Database Design Tool. In EDBT
‘96, LNCS 1057, Springer-Verlag, pages 79-95, 1996.

C. Batini, S. Ceri, and S.B. Navathe. Conceptual
Database Design, an Entity-Relationship Approach.
Benjamin and Cummings Publ. Co., Menlo Park,
California, 1992.

P.P. Chen. The entity-relationship model: toward a
unified view of data. ACM Trans. on Database Syst.,
l(1):9-36, March 1976.

R.B. Hull. Relative information capacity of simple
relational schemata. SIAM Journal on Computing,
15(3):856-886, 1986.

R.B. Hull and R. King. Semantic database mod-
elling: survey, applications and research issues. A CM
Computing Surveys, 19(3):201-260, September 1987.

L.A. Kalinichenko. Methods and tools for equivalent
data model mapping construction. In EDBT ‘90,
LNCS 416, pages 92-119, Springer-Verlag, 1990.

Y.E. Lien. On the equivalence of database models.
Journal of the ACM, 29(2):333-362, 1982.

R. J. Miller, Y.E. Ioannidis, and R. Ramakrishnan.
The use of information capacity in schema integra-
tion and translation. In Eighteenth International
Conf. on Very Large Data Bases, Dublin, 1993.

J. Ftissanen. On equivalence of database schemes.
In ACM SIGACT SIGMOD Symp. on Principles of
Database Systems, pages 23-26, 1982.

531

