A Unified Framework for Data Translation over the Web *

RiccARDO TORLONE and PAOLO ATZENI
DIA, Universita Roma Tre
via della Vasca Navale, 79
00146 Roma, Italy
{torlone,atzeni } @dia.uniroma3.it

Abstract

In this paper we propose a comprehensive framework
for the management and the exchange of (semi) structured
Web data, described according to a variety of formats and
models. We consider various schema definition languages
for XML (DTD, XML Schema and XDR) a model for semi-
structured data (OEM) and a model used to store Web data
(the relational model) and show that the primitives adopted
by all of them can be classified into a rather limited set of
basic types. We then define, building on these basic types, a
notion of “meta-formalism” that can be used to describe, in
a uniform way, these heterogeneous representations of Web
data.

In this framework, the translation of schemes and in-
stances between different models are based on the trans-
lations of the involved primitives. Complex translations can
be then obtained by simply combining a number of prede-
fined operations, which implement standard translations be-
tween primitives. Moreover, we show that, for translating
between any pair of models, it is sufficient to define a num-
ber of translations which is linear in the number of models.

These results can be used to support a number of in-
volved Web-related activities like: information exchange
between different organizations, integration of data coming
Jfrom heterogeneous information sources, storage of native
XML data in a DBMS and publishing of existing structured
(relational) data in XML.

1. Introduction

XML is rapidly emerging as the new standard for data
representation and exchange on the Web. Nevertheless, a
consensus on the most convenient and effective way to rep-
resent the structure (in database terminology, the “scheme”)
of XML data is not emerging yet.

*This work was partially supported by /AS/-CNR and by MURST
within DataX project.

0-7695-1393-X/02 $17.00 © 2002 IEEE

Actually, it is widely recognized that DTDs (Document
Type Definition [10]), which summarize document contents
by means of grammars, are often inadequate to represent
structured information in form of XML documents. For this
reason, several formalisms have been recently introduced to
describe the structure of XML data in a more expressive and
powerful way, most of them inspired by database modeling
principles. However, in spite of the efforts of W3C to de-
fine standards in this context, a proliferation of models of-
ten varying for minor details has been witnessed (for a sur-
vey and a comparison see [21]). Among them, we cite (be-
yond DTD): XML Schema [8, 28] (W3C), XDR [16] (XML
Data Reduced — Microsoft), RELAX (REgural LAnguage
description for XML) [26], SOX (13] (Schemas for Ob-
ject Oriented XML — Commerce One), DSD [20]} (Doc-
ument Structure Description — AT&T), DCD [11] (Docu-
ment Content Description — W3C) and Schematron [19].
We have also to include in this collection several “semi-
structured” models, which have been proposed to represent
XML data [1].

It follows that the exchange of information between dif-
ferent and heterogeneous information sources can be diffi-
cult to achieve, even if we possess knowledge about their
content, because of the difference in syntax and expressive
power of the formats used to describe this content. To fulfill
this need, a number of tools for the translation between dif-
ferent XML schema languages have been already proposed.
For instance, XDRtoXSD [18], which translates XDR into
XML schema definitions, and XMLSpy [29], which is able
to translates between various (but specific) XML schema
formalisms.

As a matter of fact, this problem fits into a larger and
more relevant problem: that of the exchange of structured
information between contexts (applications and/or tools)
that adopt heterogeneous data models. One example (but
relevant and largely studied in the context of XML) is the
problem of the translation of XML data into a logical data
model (e.g., the relational model or an object based model)
with the purpose of permanently store such data [15]. The

350

definition of a unified framework for the management and
the translation of data represented according to heteroge-
neous data models is a topic largely investigated in litera-
ture. We refer, in particular, to the recent works on the “su-
perimposed” information models {14, 22}, on the “Model
management systems” [S, 6, 7, 9] and on the techniques for
data conversion [9, 12, 23, 24, 25, 27].

In this framework, the goal of our current research (in-
spired by our previous work on management of multiple
models in database design tools [2, 3]) is the definition of
methods and techniques for the management of a wide vari-
ety of model-based applications over the Web in a uniform
way and to allow data translation from one representation
to another. The first step in this trend is the definition of

a “meta-formalism” that is able to capture both the main -

primitives adopted by different schema languages for struc-
tured data (XML in particular) over the Web and the ba-
sic constructs used by traditional database models to repre-
sent such information. The subsequent, and more concrete
step is the definition of an effective (and possibly efficient)
method for the translation between heterogeneous data rep-
resentations that makes use of the meta-formalism as a level
of reference. In the framework we have defined, the trans-
lation of schemes and, if needed, of the corresponding in-
stances, can be effectively specified on the basis of transla-
tions of the involved types of meta-primitives. This makes
a translation general and independent of the specific mod-
els on which it operates. Another interesting aspect is the
fact that a number of general properties of translations can
be analyzed on the basis of the properties of the model in-
volved. These results can be used to support a number of
involved Web-related activities like: information exchange
between different organizations, integration of data coming
from heterogeneous information sources, storage of native
XML data in a DBMS and publishing of existing structured
(relational) data in XML.

In this paper we report on the preliminary steps of this re-
search. Specifically, we first present the general principles
on which the work is based and then illustrate a first ver-
sion of the metamodel. We also show, by means of a num-
ber of examples, that an even simple and relatively compact
metamodel is able to capture the main features of different
formalisms (DTD, XML Schema, XDR, OEM and the rela-
tional model). We then describe our approach to the prob-
lem of translation of heterogeneous data and discuss about
important properties of such translations that need to be fur-
ther investigated.

The rest of the paper is organized as follows. In Section 2
we provide a general overview of our approach. In Section 3
we present a first version of the metamodel, which is far to
be complete but is however able to capture relevant features
of several formalisms for XML schemes. Then, in Section 4
we discuss about properties and techniques for the transla-

3561

tions between different formalisms and finally, in Section 5
we draw some conclusions.

2. An overview of the approach

The scenario of reference for our study is reported in Fig-
ure 1.

Four levels of abstractions can be identified. At the first
level we have a number of instances, which contain the
actual data. We assume here that data is organized ac-
cording to some (semi) structured format used in the pro-
cess of information exchange through the Web (some ex-
emplars are indicated in the figure). At the second level we
have schemes, which describe the structure of the instances.
Then, we have different formalisms for the description of
schemes, which we call models hereinafter. Finally, at the
top level we have one metamodel, that is, a formalism for
the definition of the various models. In the environment we
have in mind, the number of models is not fixed: new mod-
els for semi-structured Web data can be dynamically added
to the framework. Clearly, it may happen that the meta-
model is not enough expressive to capture a specific feature
of a new model. In this case, we assume that the metamodel
can be extended accordingly.

In the following, we will use the term element to re-
fer to components of a scheme, the term primitive to refer
to components of models, and the term metaprimitive for
components of the metamodel. As an example, given an
XML document containing a description of persons accord-
ing to a given XML Schema, there may be an element per-
son composed by an unordered collection of sub elements
(such as name and age). Then, the corresponding primi-
tive is all (which is the tag used in XML Schema to denote
an unordered tuple of sub elements) and the corresponding
metaprimitive is unordered sequence. To refer to the primi-
tive used to define an element we will use the phrase type of
the element; similarly, we will use rype of the primitive to
indicate the metaprimitive corresponding to a primitive. In
the example, the type of the element person is the primitive
all, whose type is in turn the metaprimitive unordered se-
quence. We note that, since we consider in the same frame-
work both traditional data models and schema languages for
structured documents, we use the term “primitive” in a quite
broader sense: a primitive can be a database construct, like
set or aggregation, but it can also be a regular expression
operator, like the operator + or x used in DTDs.

In this framework, translations between schemes and in-
stances would occur as follows. For any two models M;
and M defined with the metamodel, and for each instance
I (the source) of a scheme S; (the source scheme) for M,
(the source model), it should be possible to obtain an in-
stance [, (the rarget) of a scheme S, (the target scheme)
for M, (the target model) containing the same information

Metamodel

Models XMLS DTD XDR Relat. .
model model model model
I W
Instances E:l %
J

i

N

N

Data stores

/)

XML documems

Figure 1. The reference scenario

as ;. We say that I, (S3) is the translation of I (S1) and
into Mj.

The general approach to the definition of the environ-
ment we have illustrated follows from a former study on the
management of heterogeneous conceptual data model [2, 3]
and is based on the following principles.

e All the primitives used in most known formalisms for
expressing Web data fall in a rather limited set of cat-
egories [21] (e.g., base types, ordered sequence, un-
ordered sequence, choice, cardinalities and some oth-
ers). At the same time, many of these primitives cor-
respond to well known constructs used in conceptual
data models [17] (e.g., lexical type, sequence, aggre-
gation, disjoint union, set). Therefore, a metamodel
able to capture the main features of such models can
be defined by means of a basic set of meta-primitives,
corresponding to the above categories. Then, a model
can be described by classifying its primitives accord-
ing to the metaprimitive in the metamodel. It can be
argued that this approach is not “complete”, as it does
not cover all possible models, but it is however eas-
ily extensible: should a model with a completely new
primitive be proposed, the corresponding type could be
introduced in the metamodel.

Since there is no clear notion of when a translation
is correct we follow a pragmatic approach. We as-
sume that the primitives that correspond to the same
metaprimitive have the same semantics, and then we
define translations that operate on individual primitives

352

(or simple combinations thereof) as follows: for each
primitive = used in the source scheme such that there
is no primitive of the same type in a target model M,
we replace x by other primitives of M. This work can
be profitably supported by a predefined, “built-in” set
of elementary transformations implementing standard
translations between primitives, which we assume to
be correct by definition. These translations operates
both at scheme and at instance level. More specifically,
they include a scheme restructuring and a correspond-
ing data mapping. For instance, an ordered sequence
of tuples s can be transformed into a relation r hav-
ing the same tuples, each of which has a further at-
tribute that codes the order. A complex translation can
be then obtained as composition of elementary steps.
Moreover, we will show that for translating between
any pair of models in the framework, it is sufficient to
define only one translation for each model.

3. The metamodel
3.1. Basic constructs

Let us consider the core of three schema formalisms for
XML (DTD, XML Schema and XDR) and two data mod-
els often used in the context of Web data: the relational
model, as a representative of a value-based logical model,
and OEM, as a representative of a semi-structured model.
It turns out that a metamodel for these representatives in-
cludes a quite limited set of metaprimitives, as follows.

1. Base type: it corresponds to a primitive whose in-
stances are printable values; for example, #PCDATA
and CDATA are the only base types available in DTD’s.

. Object type: it corresponds to a primitive whose in-
stances are objects having a unique oid; the structure
of an object is defined using other primitives; for ex-
ample, this is the base primitive used in OEM to define
instances.

. Ordered sequence: it corresponds to a primitive whose
instances are ordered sequences of instances of other
primitives, called the components of the sequence. For
example, the concatenation operator is the primitive
used to define ordered sequences in DTD’s.

. Unordered sequence: it corresponds to a primitive
whose instance are ordered sequences of instances
of other primitives, called the components of the se-
quence. For example, the all operator is the primitive

- used to define unordered sequences in a XML Schema;

. Choice: it corresponds to a primitive whose instances
can be chosen among instances of other primitives. For
example, the | operator is the primitive used to define
choices in a DTD.

. Cardinaliry: it is expressed as a pair of values
(Min, Maz) and is associated with a primitive of type
3,4 or 5; it corresponds to a primitive whose instances
are sets of instances of the primitive associated with
it; these sets must have a cardinality included between
Min and Max. For example, the 4 operator is the prim-
itive used to define a cardinality (1, N) in a DTD.

. Key: it is associated with a primitive of type 3 or 4;
it corresponds to a primitive expressing the uniqueness
for a (one or more) component the primitive associated
with it. An well known exemplar of this metaprimitive
is the key of the relational model.

. Foreign Key: it is associated with primitives of type
3 or 4; it corresponds to primitives expressing refer-
ential constraints between a (one or more) component
the primitives associated with it and the key of another
primitive. For example, the Keyref tag is used in XML
Schema to define a primitive of this type.

Note that metaprimitives can be combined. We will call a
specific combination of metaprimitives a pattern.

3.2. Model definition

Once the metamodel has been fixed, a model can be
specified by defining: (1) the primitives offered by the
model in terms of the metaprimitive of the metamodel and

353

the way in which these primitives can be combined, that is,
the allowed patterns, and (2) the syntax used by the DDL of
the model to specify the application of its primitives in the
construction of schemes. We also assume that, in defining
a model, a labeling functions can be freely used to name
primitives and their components. As we have said, the ex-
tensibility of the approach needs always to be guaranteed:
if a primitive of a model does not correspond to any of the
metaprimitive at disposal, then we assume it is possible to
include a new component in the metamodel.

Clearly, all of this can be specified using a specific syn-
tax. However, in this preliminary report, we just show how
this can be done by means of a number of informal and sim-
plified examples and with reference to the metaprimitives
above mentioned.

o Relational model. This model can be defined by means
of a few primitives: the domain, which is a base type,
the tuple, which corresponds to an unordered sequence
of values taken from a domain, and the relation, which
corresponds to the association of the cardinality prim-
itive (with Min = 0 and Max = N) with the tuple
primitive.

OEM. This model can also be defined by means of a
few primitives: it includes the atomic type, which is a
base type of the metamodel, the atomic object, which
corresponds to the application of the object type to
the atomic type, and the complex object, which cor-
responds to the application of the object type to an un-
ordered sequence of (atomic or complex) objects.

DTD. A simplified version of DTD can be defined
by means of the following primitives: two base type
(#PCDATA for elements and CDATA for attributes),
three forms of cardinality (*, ? and + with the ob-
vious meaning) called occurrences, the ID and the
IDREF(s), which are used to define keys and foreign
keys respectively, the attribute, which is just a labeled
value of type ID, IDREF or CDATA, and the element.
The element can have associated with it an unordered
sequence of attributes and can be either simple or com-
posite. A simple element is a labeled value of type
#PCDATA. A composite element is either a choice
(with possibly an occurrence associated with it) or an
ordered sequence of (sub) elements (each of which
with a possibly an occurrence associated with it).

XML Schema. This is a quite complex formalism. A
simplified version can be defined by means of the fol-
lowing primitives. There are 45 (!) base types (e.g.,
string, integer, float and so on) called simple rypes.
There is a cardinality primitive that allows the spec-
ification of any value for Max and Min (here called
maxOccurs and minOccurs respectively). An attribute

is. a labeled value from a base type. An element is
a labeled (simple or complex) type. A complex type
has an optional unordered sequence of attributes and a
“group” of elements with possibly a cardinality associ-
ated with them. A group can be a sequence (ordered),
a all (unordered sequence) or a choice. Finally, keys
and foreign keys can be defined over both attributes
and elements using the primitives key and Keyref re-
spectively.

o XDR. It has more or less the same primitives of XML
Schema but uses a different syntax. For instance, the
ordered sequence primitive is called seq and the choice
is called one in XDR.

4. Translation between models

4.1. A supermodel approach

As we have said in the Introduction, the final goal of
our research is a system that, given two models defined by
means of the metamodel, is able to translate schemes and
possibly instances from one model to another.

As a preliminary tool, a subsumption relationship < be-
tween models is defined. We will not present here the tech-
nical details. Intuitively, it is a partial order relationship
is based on: (1) set containment of patterns allowed in the
models, and (2) a predefined partial order on patterns. The
latter allows us to specify, for instance, that a pattern involv-
ing a cardinality primitive of a DTD (where only 7 (0,1), +
(1,N) and * (O,N) are allowed) is subsumed by the same pat-
tern that involves the cardinality primitive of XML Schema
(where minOccurs and maxOccurs can assume in principle
any value). It follows that a scheme which is an instance of
a model M, is a scheme of any model that subsumes M.

On the basis of this relationship, we then introduce a
notion of supermodel, which is used as a reference in the
translations. Intuitively, a supermodel is a model (that is,
an instance of the metamodel) which includes a representa-
tive of each pattern used in the current models, in its most
general version. Hence, by definition, the supermodel sub-
sumes each other model according to the subsumption rela-
tionship.

The translations are then based on the following princi-
ples.

1. A translation between models is based on the transla-
tion of the basic primitives of involved models. More
precisely, for each primitive P (or variation thereof)
for a metaprimitive P of the source model M for
which there is not a corresponding primitive P’ for P
in target model M', we have to specify how it is repre-
sented by means of the primitive available in M’.

/ \
t Supermodel \

instance of subsumption translation

Figure 2. Relationships and translations be-
tween models

2. The translation process can be seen as composed of
two steps: (i) from the source model to the supermodel,
and (ii) from the supermodel to the target model. Step
(i) is trivial, since, because of the subsumption rela-
tionship, every scheme of any model is a scheme of
the supermodel. Step (ii) can be performed by means
of suitable translations of the elements in the source
scheme whose metatype has no counterpart in the tar-
get model into elements of allowed types. Note that,
with this approach, it suffices to define translations
from the supermodel to every other model in order to
implement all the possible translations between mod-
els. It follows that the number of required translations
is linear in terms of the number of models, instead of
quadratic, as it would be if the process had to be spec-
ified for each pair of models.

3. As the number of constructs is limited, it is possible
to predefine a number of basic translations, which can
be composed to build more complex translations. It
is interesting to note that in this way we can satisfac-
torily refer to the notion of “transformational equiva-
lence” [4], under which two schemes are equivalent if
one can be obtained from the other by applying a set
of atomic transformations, which preserve equivalence
by definition.

The overall picture is illustrated graphically in Figure 2.
A translation ¢t from the supermodel to every other model
need to be specified. These translations are defined on indi-
vidual primitives of the involved models and have two main
sub-components: a translation t5 that operates on schemes
and a corresponding translation ¢! that operates on instances
according to the transformations specified by ¢¥ at scheme

level. Thus, to translate the instance I; of the schema S;
into the model M we make use of the translation to (note
that S; is indeed a scheme of the supermodel). We then
obtain the scheme S using t5 and the instance I, using 1.

4.2. An example of translation

In this section we present an example of translation.
Specifically, we discuss the translation of the XML schema
reported in Figure 3 into a DTD and into a relational
schema.

In the context of the metamodel, this XML schema can
be profitably represented by the graph reported in Figure 4
(where dot lines indicate attributes). In this figure we have
also reported the notation used for the metaprimitives of the
metamodel.

In our framework, the translation of this schema into a
DTD can be obtained by applying the following transfor-
mations on base primitives:

1. All base types are translated into strings;

2. Unordered sequences are translated into ordered se-

quences;

Cardinalities are simplified, to get to the coarser alter-
natives allowed in DTDs;

4. Keys are translated into ID attributes;

5. Foreign keys are translated into IDREF attributes.

The representation of the schema we obtain by applying
this sequence of operations is reported in Figure 5. Note
that we can use here the same notation as above, since it
actually refers to the metamodel. The corresponding DTD
is shown in Figure 6.

At the instance level this translation just requires to trans-
form elements involving foreign keys into attributes, since
in DTDs only attributes can be of type IDREF.

Similarly, the translation of the same schema into a re-
lational schema can be obtained by applying the following
transformations on base primitives:

1. Elimination of choices;

. Translation of ordered sequences into unordered se-
quences;

. Unnest of nested unordered sequences;
. Simplification of cardinalities;
. Insertion of keys for sequences that do not have them;

Merge of attributes and elements.

355

<xsd:schema>
<xsd:element name="MyCompany">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Department™
type="DepartmentType"
maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:key name="EmpKey">

<xsd:selector xpath="Department/Employee"/>

<xsd:field xpath="@EmpID"/>
</xsd:key>
<xsd:keyref name="ManFK"
refer="Empkey">
<xsd:selector xpath="Department"/>
<xsd:field xpath="Manager"/>
</xsd:keyref>
</xsd:element>
<xsd:complexType name="DepartmentType">
<xsd:sequence>
<xsd:element name="DepName™
type="xsd:string"/>
name="URL"
type="xsd:string"/>
name="Manager"
type="xsd:string"/>
<xsd:choice minOccurs="0"
maxOccurs="15">
<xsd:element name="Employee”
type="EmployeeType"/>
name="Freelance"
type="FreelanceType"/>

<xsd:element

<xsd:element

<xsd:element

</xsd:choice>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="EmployeeType">
<xsd:sequence>
<xsd:element name="Name"
type="xsd:string”/>
name="Title"
type="xsd:string"
minOccurs="0"/>
name="PhoneExt"
type="xsd:integer"/>

<xsd:element

<xsd:element

</xsd:sequence>
<xsd:attribute name="EmpID"
type="xsd:string"
use="required"/>
name="IsManager”
type="xsd:boolean™
use="optional"/>
</%sd:complexType>
<xsd:complexType name="FreelanceType">
<xsd:all>

<xsd:element name="Name"
type="xsd:string"/>
name="Address"
type="xsd:string"/>
name="EMail”
type="xsd:string"”
minOccurs="0"/>

<xsd:attribute

<xsd:element

<xsd:element

</xsd:all>
</xsd:complexType>
</xsd:schema>

Figure 3. An XML Schema

Empld

TsManager

PhoneExt Name 5375, Emad

Title

Figure 4. A graphical representation of the
XML Schema in Figure 3

Empld

TsMansger

Name PhoneExt

Name sgies Emad

Figure 5. Translation of the schema in Figure 4
intoa DTD

<!ELEMENT MyCompany {(Department+)>
<!ELEMENT Department (

DepName, URL, {(Employee |
) >
<!'ATTLIST Department

Manager IDREF #IMPLIED>
<!ELEMENT DepName (#PCDATA)>
<!ELEMENT URL (#PCDATA)>
<!ELEMENT Employee (

Name, Title?, PhoneExt

Freelance) +

) >

<!'ATTLIST Employee
EmpID ID #REQUIRED
IsManager CDATA>

<!ELEMENT
Name,

Freelance (
Address, EMail?
) >
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!'ELEMENT

Name (#PCDATA) >
Title (#PCDATA)>
PhoneExt (#PCDATA)>
Address (#PCDATA)>
EMail (#PCDATA)>

Figure 6. A DTD obtained as the result of a
translation

356

MyCompany

Figure 7. Translation of the schemain Figure 4
into a relational schema

The representation of the schema we obtain by applying
this sequence of operations is reported in Figure 7. With
traditional notation, the relational scheme would be as fol-
lows:

o Department(DeptID, Manager*, Name, URL)

e Employee(EmplD, IsManager, Name, Title*, Phone-
Ext, Dept)

e Freelance(FlID, Name, Address, Email*, Dept)

Clearly, this is only a possible way to do that. At the
instance level this translation is more involved and requires
the transformation of an XML document into a set of re-
lations according to the translation at scheme level above
described.

4.3. Properties of translations

Let us consider a number of interesting properties that
can be studied for the translations we have defined.

The first requirement for a translation is to be valid, that
is, the output scheme (instance) should be a valid scheme
(instance) for the target model. Then, a notion of equiva-
lence should be preserved. Many definition of equivalence
have been proposed in the literature. In essentially all cases,
a necessary (but not sufficient) condition for equivalence of
schemes is that there is a one-to-one correspondence be-
tween their respective sets of instances.

Then, there are pairs of models for which it is possible
to find an equivalent target scheme (under every definition)
for each source scheme: for example, this holds if XDR
and XML Schema, with suitable technical details, are con-
sidered. However, this is not true in general: it is clear that
equivalence cannot be guaranteed when the source model
allows finer representation of features than the target model.
For example, if the source schema is an XML Schema that
has associated cardinalities like (1,10) or (5, N), and the
target is a DTD (where the only allowed cardinalities are

{0,1), (1, N), and (0, N)) then there cannot be an equiva-
lent target scheme. In these cases we say that there is a loss
of (meta) information in the translation process.

There are also cases where it is possible to find an equiv-
alent target scheme for each source scheme, but the intuitive
information represented by the target scheme is less rich
than that of the source scheme. This is especially appar-
ent when there is an “implementation” process: it is known
that, given a source scheme in XML Schema, with rather
general features, it is possible to find a relational scheme
that is equivalent to the source scheme, but does not rep-
resent the same semantics as the source scheme. In these
cases, it is usually impossible to invert the translation. Here
we say that the information, though preserved, is degraded.
Making a parallel with thermodynamics, we can say that
in this case “energy” is preserved whereas “entropy” in-
creases, without any chance of being decreased in the fu-
ture.

Both in the case of loss of information and in the case
of degradation, there are various possible translations of
schemes, with incomparable properties (that is, each trans-
lation is better on some grounds and worse on others). Even
when equivalent translations exist, if the models are redun-
dant (that is, allow different primitives for the representa-
tion of individual features), there are different, reasonable
translations.

5. Conclusion and future work

In this paper, we have illustrated some preliminary re-
sults of our research whose goal is the definition of an en-
vironment for the management and the exchange of (semi)
structured Web data, described according to a variety of for-
mats and models. The basic approach to this problem con-
sists in the definition of a “metamodel” that generalizes the
basic modeling primitives adopted by the various models.
To this end, we started from considering the core of various
schema definition languages for XML and a number of data
models used for the description and the permanent storage
of XML data. We have shown that the primitives adopted
by all of them can be classified into a rather limited set of
basic types. We have then proposed a metamodel having a
metaprimitive for each of these class. In this way, the trans-
lation of schemes and of the corresponding instances, can be
specified on the basis of translations of the involved types
of primitives. This is effectively carried out by means of
a number of predefined operations that implement standard
translations between basic primitives. A number of issues
need to be further investigated. First of all, several notions
need to be better formalized and studied in a more system-
atic way. There are several important aspects about XML
and schema languages for XML that have been disregarded
and it has to be understood how they fit in this framework.

357

Among them, we cite the namespaces, the content models
and several form of constraints which can be defined in the
context of XML.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Dara on
the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, 1999.

[2] P. Atzeni and R. Torlone. Management of Mul-

tiple Models in an Extensible Database Design

Tool. In Fifth International Conference on Extending

Database Technology (EDBT '96), Lecture Notes in

Computer Science 1057, Springer—Verlag, pag. 79-95,

1996.

[3] P. Atzeni and R. Torlone. MDM: A Multiple-

Data-Model Tool for the Management of Heteroge-

neous Database Schemes. In ACM SIGMOD Interna-

tional Conference on Management of Data, Tucson,

pages 528-531, 1997.

[4] C.Batini, M. Lenzerini, and S.B. Navathe. A compar-
ative analysis of methodologies for database scheme
integration. ACM Computing Surveys, 18(4):323-364,
1986.

[5] P. A. Bernstein and T. Bergstracsser. Meta-data sup-
port for data transformations using Microsoft Repos-
itory. I[EEE Data Engineering Bulletin, 22(1):9-14,
March 1999.

[6] P. A. Bernstein, A. Y. Levy, and R. A. Pottinger. A Vi-
sion for Management of Complex Models. SIGMOD

Record, 29(4):55-63, December 2000.

[7]1 P. A. Bemnstein and E. Rahm. Data Warehouse Sce-
narios for Model Mangement. In 19tk Int. Conference
on Conceptual Modeling (ER2000), Salt Lake City,
Lecture Notes in Computer Science 1920, Springer-
Verlag, pages 1-15, 2000.

[8] P. V. Biron and A. Malhotra (ed.). XML Schema
Part 2: Datatypes. W3C Document, April 2000.

http://www.w3.org/.
[9]

S. Bowers and L. Delcambre. Representing and
Transforming Model-Based Information. In
ECDL Work. on Semantic Web, Lisbon, 2000.

http://www.ics.forth.gr/proj/isst/SemWeb/.

[10] T. Bray, J.Paoli, C. M. Sperberg-McQueen (ed.). Ex-
tensible Markup Language (XML) 1.0. W3C Docu-

ment, February 1998. http://www.w3.org/.

(1]

[12]

[13]

[14]

[15]

[16]

{17}

(18]

(19]

(201

(21

[22)

[23]

T. Bray, C. Frankston, A. Malhotra (ed.). Document
Content Description for XML. W3C Document, July
1998. http://www.w3.org/.

S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your
Mediators Need Data Conversion!. In Proc. of ACM
SIGMOD International Conference on Management
of Data, Seattle, USA, pages 177-188, 1998.

A. Davidson, M. Fuchs, M. Hedin, et al. Schema
for Object-Oriented XML 2.0. W3C Document, July
1999. http://www.w3.org/.

L. Delcambre and D. Maier. Models for Superimposed
Information. In I8th Int. Conference on Conceptual
Modeling (ER99), Paris, Lecture Notes in Computer
Science 1727, Springer-Verlag, pages 264-280, 1999.

D. Florescu and D. Kossmann. Storing and Querying
XML Data using an RDMBS. [EEE Data Engineering
Bulletin, 22(3): 27-34, 1999.

C. Frankston and H. S. Thompson. XML-
Data Reduced. Internet Document, July
1998. http://www.ltg.ed.ac.uk/ ht/’XMLData-
Reduced.htm

R.B. Hull and R. King. Semantic database modelling:
survey, applications and research issues. ACM Com-
puting Surveys, 19(3):201-260, September 1987.

IBM Corporation. XDRtoXSD. Internet Document,
2000. hitp://alphaworks.ibm.com/tech/xdrtoxsd.

R. Jelliffe. The Schematron, an XML Struc-
ture Validation Language using Patterns
in Trees. Internet Document, May 2000.

hitp://www.ascc.net/xml/resource/schematron/.

N. Klarlund, A. Moller, M. I. Schwatzbach. DSD: A
Schema Language for XML. In Proc. 3rd ACM Work-
shop on Formal Methods in Software Practice, 2000.

D. Lee and W. W. Chu. Comparative Analysis of
Six XML Schema Languages. SIGMOD Record,
29(3):76-87, 2000.

D. Maier and L. Delcambre. Superimposed Informa-
tion for the Internet. In ACM SIGMOD Workshop
on The Web and Databases WebDB99, Philadelphia,
pages 1-9, 1999.

P. McBrien and A. Poulovassilis. A Uniform Ap-
proach to Inter-model Transformations. In /Ith Int.
Conference on Advanced Information Systems En-

gineering (CAIiSE99), Heidelberg, Lecture Notes in

Computer Science 1626, Springer-Verlag, pages 333~
348, 1999.

358

[24]

[25]

[26]

(27

(28]

[29]

R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. The
use of information capacity in schema integration and
translation. In Eighteenth International Conf. on Very
Large Data Bases, Dublin, 1993.

T. Milo and S. Zohar. Using Schema Matching to Sim-
plify Heterogeneous Data Translation. In Int. Confer-
ence on Very Large Data Bases (VLDB), New York,
1998.

M. Murata. RELAX (REgural LAnguage. de-
scription for XML). Internet document, 2000.
http://www.xml.gr.jp/refax/.

Y. Papakonstantinou, H. Garcia-Molina, and

J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In Proc. of the Eleventh
International Conference on Data Engineering,
Taipei, Taiwan, pages 251-260, 1995.

H. S. Thompson, D. Beech, M. Maloney, N. Mendel-
sohn (ed.). XML Schema Part 1: Structures. W3C
Document, April 2000. http://www.w3.org/

XML Spy. http://www.xmlspy.com/

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

