Management of Multiple Models in an
Extensible Database Design Tool*

Paolo Atzeni' and Riccardo Torlone?

! Terza Universita di Roma, c¢/o DIS, Via Salaria 113, 00198 Roma, Italy
2 Terza Universita di Roma, c/o IASI-CNR, Viale Manzoni 30, 00185 Roma, Italy

Abstract. We describe the development of a tool, called MDM, for the
management of multiple models and the translation of database schemes.
This tool can be at the basis of an integrated CASE environment, sup-
porting the analysis and design of information systems, that allows differ-
ent representations for the same data schemes. We first present a graph-
theoretic framework that allows us to formally investigate desirable prop-
erties of schema translations. The formalism is based on a classification of
the constructs used in the known data model into a limited set of types.
Then, on the basis of formal results, we develop general methodologies
for deriving “good” translations between schemes and, more in general,
between models. Finally, we define the architecture and the function-
alities of a first prototype that implements the various features of the
approach.

1 Introduction

During the past decade, the availability and use of automated tools for the anal-
ysis and development of information systems have rapidly increased. It has been
observed however that, although these tools provide significant benefits to their
users with productivity gains, current systems still present various limitations.
Hence, a new generation of database design tools is currently under definition
and development with the goal of extending functionalities and improving us-
ability [6].

One important reason for the gap between user expectations and reality is
the so-called impedance mismatch between methodologies and tools [6, Chapter
15], that is, the differences between the model for a given methodolgy and the
model effectively supported by a specific CASE tool. A natural way for over-
coming this problem is the design of extensible systems that support multiple
data models and manage the translations of schemes from one model to an-
other. The possibility of customizing the environment (with the definition of a
model suitable for a given methodology) is a big step towards the solution of the
impedance mismatch problem. Moreover, the availability of different, custom-
defined models and their interaction is useful for a number of reasons: (i) to let
each designer work with his/her favorite model, yet allowing the exchange, reuse

* This work was partially supported by Consiglio Nazionale delle Ricerche and by
MURST.

and integration of their work, (ii) to tackle different subproblems with different
models, suitable with the specific aspects of each, and (iii) to integrate the re-
sults of independent design activities (a need that may arise when companies
merge or get involved in a federated project).

The goal of our research is the definition of an environment that allows the
specification of conceptual data models by means of a suitable formalism called
a metamodel. Then, for any two models M; and M, defined in this way, and
for each scheme S (the source scheme) of My (the source model), it should be
possible to obtain a scheme S (the target scheme) that be the translation of Sy
into Mz (the target model). The solution we have proposed in our preliminary
study [3] is based on the following points:

— Since all the constructs used in most known models fall in a rather limited
set of categories [11] (lexical type, abstract type, aggregation, generalization,
function and a few others) a metamodel can be defined by means of a basic
set of metaconstructs, corresponding to the above categories. Then, a model
can be described by defining its constructs by means of the metaconstructs in
the metamodel. It can be argued that this approach is not “complete”, as it
does not cover all possible models, but it 1s however easily extensible: should
a model with a completely new construct be proposed, the corresponding
type could be introduced in the metamodel.

— Since there is no clear notion of when a translation is correct (a lot of re-
search has been conducted in the last decades on scheme equivalence with
reference to the relational model [2, 10, 15] or to heterogeneous frameworks
[1, 12, 13, 14], but there is no general, agreed definition) we follow a prag-
matic approach. We assume that the constructs that correspond to the same
metaconstruct have the same semantics, and then we define translations
that operate on individual constructs (or simple combinations thereof) as
follows: for each construct x of the source scheme such that there is no con-
struct of the same type in a target model M, we try to replace z by other
constructs which are instead allowed in M. This work is supported by the
use of a predefined set of elementary transformations which implement the
standard translations between constructs studied in the literature [6] (which
we assume to be correct by definition)3. Thus, a complex translation can be
obtained just as composition of elementary steps.

To the best of our knowledge, there is not much literature related to the problem
we tackle and the goal we set. Some work exists on the idea of a metamodel for
the representation of models [5, 12], but the goal is more on the integration of
heterogeneous databases in a federated environment [16] than on the translation
of schemes to generic target models.

The approach has been studied within a graph-theoretic framework that al-
lows us to define in an uniform way schemes and models [4]. In this framework
a model M is defined by means of a set of patterns P, directed graphs whose

® The approach could be called “axiomatic”: this is coherent with the difficulty in
defining correct translations.

nodes have different types (corresponding to the basic metaconstructs we men-
tioned above, such as lexical, abstract, aggregation and function) and edges have
ranges as labels. A partial order can be introduced on patterns, which, suitably
extended, becomes a lattice on sets of patterns. Elementary transformations are
described on the basis of the patterns they eliminate and the patterns they in-
troduce: clearly, this is only part of their description (we say this is the signature
of a basic translation, as opposed to its implementation), but it is sufficient for
studying general properties of translations. Using this description we are able
to define and characterize desirable properties of translations, and to develop
general methodologies for the automatic generation of translations that satisfy
such properties. The results are obtained in an elegant way by means of the
lattice framework on patterns.

On the basis of these results, we have defined functionalities and architec-
ture of a first prototype of the system which is currently under development at
University of Rome “La Sapienza”. On this system, we are testing the various
features of the approach in an important case which involves the various versions
of the Entity-Relationship model.

The paper is organized as follows. In Section 2 we informally describe our
graph-theoretic framework (presented in [4]). In Section 3, we develop practi-
cal methods for deriving translations between models and between schemes of
different models. In Section 4, we discuss operational issues and present the
architecture of a first prototype of the system. In Section 5 we show a brief
example of application of our methodology. Finally, in Section 6, we draw some
conclusions.

2 A formal approach to the problem

2.1 Structures and Patterns

We have introduced a graph-theoretic formalism that allows us to define in an
uniform way schemes and models [4]. In this framework, the components of the
metamodel are represented by a fixed set of node types N and a fixed set of
edge types €. In the following, we will refer to a (simple) metamodel that con-
sists of three types of nodes, corresponding to abstracts (denoted by the symbol
A), aggregations (®), and lericals (O); and six types of edges, corresponding to
functions (denoted by —), multivalued functions (—=), components of aggrega-
tion (—»), keys of aggregation (—e—), keys of abstract (—e>) and subset relations
between abstracts (=). We point out however that the approach can handle a
variety of metamodels [4].

Two main notions have been introduced for describing schemes and models:
the notion of a structure, a directed acyclic graph whose nodes and edges are
elements of the metamodel, and the notion of a pattern, a tree whose nodes
and edges are elements of the metamodel and where the edges have ranges as
labels. Roughly speaking, a range denotes the number of times a certain edge can
appear in a structure. Thus, a pattern describes a collection of structures that

involve a specific composition of metaconstructs. A mapping between structures
and sets of patterns can be easily defined, so that, given a set of patterns P
and a structure S, we can verify whether S is an instance of (that is, can be
described by) P. The set of all instances of a set of patterns P is denoted by
Inst(P).

Figure 1 shows an example of a set of patterns and Figure 2 one of its
instances (n is a parameter denoting a fixed integer). The instances of this set
of patterns may be: (1) isolated abstracts with key combined with (monovalued
or multivalued) functions from abstracts to lexicals (pattern Py), and (2) (one-
to-many or many-to-many) binary aggregations of abstracts combined as above
(patterns Py and Ps).

Fig. 1. A set of patterns describing a version of the E-R model.

[] []

Fig. 2. A structure that is an instance of the set of patterns in Figure 1.

A natural partial order relationship < can be defined on sets of patterns,
which yields a practical way to test whether a set of patterns Py is subsumed
by another set of patterns Ps, that is, whether the set of all instances of Py is
contained in the set of all instances of Py (in symbols Inst(P1) C Inst(P2)). For

instance, the set of patterns in Figure 3 subsumes (and therefore describes at
least all the structures described by) the set of patterns in Figure 1.

Fig. 3. A set of patterns that subsumes the set of patterns in Figure 1.

Finally, we have shown that the partial order relation < induces a lattice on
the set of sets of patterns, that is, every finite collection P of sets of patterns
has both a greatest lower bound and a least upper bound.

2.2 Models and Schemes

In the framework above, a model can be defined by a set of patterns P and by
a labeling function v that maps each element of N"U &, occurring in P, to a
label. These labels corresponds to the names given to the constructs in a specific
model.

Let us consider for instance the patterns in Figure 1. If we associate the
label “Entity” to the node A the label “Relationship” to the node ®, the label
“Domain” to the node O, the label “simple attribute” to the edge — and the
label “multivalued attribute” to the edge —+, we define a version of the Entity-
Relationship model (E-R for short) involving binary relationships on entities
which can have simple and/or multivalued attributes.

Similarly, a scheme is defined by a structure S and by a labeling function
A that maps each node and each edge of S to a label. The labels associated
with the components of a scheme correspond to names of the various concepts
represented in the scheme (e.g., persons, books and so on).

It 1s important to note that in our approach, the definition of scheme is
completely independent of the notion of model. Clearly, it is possible to establish
a correspondence between schemes and models: a scheme § = (S, A) is allowed
in a model M = (P,~) if S € Inst(P). It is easy to see that, on the basis of the
subsumption relationship, we can always verify whether a scheme $ is allowed
in a model M.

2.3 Schema translations

A schema translation T is a function that operates on structures by replacing
constructs with other constructs. The behavior of a translation can be effectively
described in our framework by a pair of patterns ¢ = (Py, P2) (we say this is
the signature of a basic translation, as opposed to its implementation or body).
Intuitively, a translation signature represents: (1) the constructs eliminated by
7 and (2) the constructs introduced by 7, as effect of its execution. For instance,
the following translation signature:

represents a translation that replaces abstracts and (optional) functions from
abstracts to lexical (e.g., an entity of the E-R model with its attributes), with
an aggregation on lexicals (e.g., a relation of the relational model). Note that,
also in this case, a translation signature is independent of a specific model. A
translation rule has the form o[7], where 7 is a translation function and o is a
translation signature for 7.

A nice property of translation signatures 1s that they can be used to charac-
terize translations in terms of sets of patterns, that is, we can compute the effect
of o on a set of patterns P, denoted by o(P) (intuitively, c(P) = P—{ Py }U{ P }),
such that, for each S € Inst(P), it is the case that: 7(S) € Inst(c(P)).

In our approach, a complex translation 7' can be obtained as a composition of
a number of predefined basic translation rules: T'= o1[m], . . ., o [7]. These basic
translations implement the standard translations between the constructs present
in the traditional data models (e.g., from an entity of the Entity-Relationship
model to a relation of the relational model, or from a n-ary relation to a set of
binary ones) [3]. The effect of the execution of a complex translation 7" on a set
of patterns P, denoted by or(P), can be easily computed as the composition of
the effects of the components of 7.

2.4 Formal properties of schema translations

Using the results described above, we can formally verify the correctness of a
translation 7" from a model M; = (Ps, ;) to a model My = (P, y¢), that is, the
fact that the application of T to any scheme of M, always generates a scheme
allowed in M. Indeed, T is a correct translation from M; to M; if and only if
or (Ps) j Pt~

One of the major result in [4] is that, as a consequence of the lattice frame-
work, given a set of models M, there 1s no need to specify a translation for each
pair of models in M since, for each model M; = (P, v) € M, it is sufficient
to look a translation from Pt (the least upper bound of the sets of patterns

describing the models in M) to P;: this translation will be correct from any
model in My € M to M;. Thus, the number of required translations is linear in
terms of the number of involved models, rather than quadratic. It could be said
that the set of patterns Pt represents a supermodel containing all the possible
combination of constructs used in the various models in M.

Intuitively, a set of basic translation rules R is complete with respect to a set
of models M if it is possible to find a correct translation 7', using the rules in
R, from any pair of models in M. Another important result in [4] is that we can
test completeness by verifying the existence of translations from the supermodel
(see above) to the minimal models (the models whose description is subsumed
by the description of any other model).

We can also formally define a natural measure of the “quality” of a trans-
lation from one model to another. Given two different correct translations T3
and Ty from a source model M; = (Ps,v;) to a target model My = (P, v),
Ty is preferable than Ty if op,(Ps) < o, (Ps) = P¢. Intuitively, a translation
is preferable than another if the effect of its execution is “closer” to the target
model. For instance, a translation towards a version of the E-R model with n-ary
relationships that is able to generate both binary and ternary relationships is
preferable than another translation that generates only binary relationships.

Finally, two reasonable notions of “optimization” can be defined for transla-
tions. A correct translation 7" from a source model M; to a target model M; is
minimal if there is no rule R in T such that T'— {R} is correct and preferable
to T'. A correct translation 7' from a source model M, to a target model M; is
optimal if there is no other correct translation 7" from M, to M, such that 7"
is preferable to T'.

3 Generating translations

On the basis of the formal results on translations, we present in this section
a number of practical algorithms for deriving correct and (possibly) optimal
translations between models. We will refer to a set of basic translations Ry, which
we assume to be predefined, but we will not assume that this set is complete.
Then, the algorithm we propose can be also used to test for completeness as
described in the previous section.

3.1 Preliminaries

We will start by proposing a method for deriving reductions, that is translation
between models described by sets of patterns P, and P; such that P, < P,.
Indeed, this is not a restrictive hypothesis since, by the results on the lattice
framework, for any pair of models M; and Ms which are not comparable, a
translation from their least upper bound (which, by definition, subsumes both

* Actually, a reduction may contain steps introducing new patterns, but at the end,
it always generates a set of patterns that is subsumed by the original set.

of them) to My (M32) is also a correct translation from M» to My (from M; to
Ms).

A very general method for generating a reduction from Ps to P; consists
in selecting rules that eliminate patterns of P, which are not allowed in P;.
Unfortunately, this cannot be done naively since the order in which the rule are
selected is crucial. In fact, it may happen that a rule that eliminates a certain
pattern P is selected before a rule that eliminates another pattern but, as a
side effect, introduces P again. A monotonic reduction is one in which if it is
never the case that a pattern is eliminated in one step and introduced again
in a subsequent step. It turns out that this property can be verified locally, by
analyzing the set of rules at disposal. Given a set of rules R, the analysis needs
the construction of a graph Gz, called precedence graph of R, such that the
nodes represent the rules in 7" and there is an edge from a rule R; to a rule
R; if R; introduce a pattern which is deleted by R;. If the graph Gr does not
contain any cycle, the set R is serializable. Then, it is possible to show that a
serialization of R (that is, a translation T based on an order of the rules in R
that satisfies the partial order induced by G'z) is monotonic.

3.2 Reductions

The first algorithm we propose is based on the assumption that the set of rule
of reference Ry 1s serializable. We will later relax this hypothesis by refining the
algorithm. This assumption is indeed very useful since we have proved in [4] that
if a set of rules R is serializable, then any serialization based on R produces the
same effect and therefore, in this case, the order in which the rule are selected
is immaterial. It follows that the basic algorithm is quite simple.

Algorithm REDUCTION-SET-1
Input: A pair of models My = (Ps,7vs) and My = (Pe,v:) such that Py < P
and a set of basic rules Ry.
Output: A set of rules Rout € Rp.
begin
{Part 1: search for a correct translation}
Rout 1= 0,7? =Py
for each R € R, do
if R deletes patterns in P that are not in Py
then Ryt := Rout U{R}; P := PU {patterns introduced by R} endif;
until P <P, or dll the rules in Ry have been selected;
if P £ P, then return(f) and exit;
{Part 2: search for a minimal rule set}
for each rule R € R, do
P’ = the effect of Rour — {R} on Ps;

PP <P
then R,y := Rour — {R}; P := P’ endif;
endfor

end.

Given a pair of models M; = (Ps, v:) and My = (P, v:), in the first step the
above algorithm selects every rule of Ry, whose effect deletes patterns in P, which
are not in P;. At each step, new patterns eventually introduced by selected rules
are added to Ps. At the end, if the effect of the selected rules on P, (we can speak
of effect of a set of rules for the property mentioned above) is a set of patterns
subsumed by P, then the set R is not complete, the algorithm interrupted and
the empty set is returned. In the second step, a minimal translation is derived
from the set of rules selected in the first step by deleting “redundant” rules (if
any), that is, rules whose elimination produce a preferable translation.

Now, assume that the set of rule R, is not necessarily serializable. The algo-
rithm can be slightly modified by assuming, in searching for a correct translation,
that the selected set of rules is serializable (and so the first two steps of the al-
gorithm are not modified) and then verifying, a posteriori, the serialization of
the obtained set of rules. If this set is not serializable, the algorithm is recur-
sively executed over the set of rules R, — { R}, where R is one of the rules that
causes the set to be non-serializable. This is summarized in the following general
algorithm.

Algorithm REDUCTION-SET-2
Input: A pair of models My = (Ps,7s) and My = (Pe,) such that Py < P
and a set of rules Ry.
Output: A set of rules Rou: € Ryp.
begin
{Part 1: search for a correct translation}
{Part 2: search for a minimal rule set}
{Part 3: search for a serializable rule set}
R = {rules in Rout tnvolved in a cycle in Gp};
while R,: is not serializable and R. # do
pick a rule R from R.;
R..: ‘= REDUCTION-SET-2(P;, P, R. — {R});
if R, # 0 then R,y := R,
endwhile;
if Rout 15 not serializable then return(f)) and exit;
end.

Finally, the algorithm can be further refined for achieving optimality. Sim-
ilarly to the second algorithm, this can be done by applying the algorithm re-
cursively to the set of rules Ry, — {R}, where R is a rule that deletes patterns
which are indeed in the target model. The rationale under this choice is that
there could be “finer” functions which are able to replace the work done by R
and which do not require the deletion of patterns in the target model.

3.3 Model translations

According to the properties on translations between models described in Section
2, the general algorithm for deriving model translations is the following:

Algorithm MODEL-TRANSLATION
Input: A pair of models My = (Ps,7s) and My = (Pe,vt)
and a set of rules Ry.
Output: A correct translation from Mg to M;.
begin
Pt := the least upper bound of Ps and Py;
if Ry is serializable
then R,y := REDUCTION-SET-1(PT, Py, Rs)
else Ryt := REDUCTION-SET-2(P1, Py, Rp);

lf Rout 7& @
then T,,; := a serialization of Rout;
return(7,,:) endif;

end.

3.4 Schema translations

Let $ be a scheme of a certain model M, and assume we want to translate $ in
another model M;. Also, let T" be a correct and optimal translation from M; to
M. Actually, before applying T to 8, we can refine T' adapting the translation
to the scheme, by deleting basic steps of T that are “useless”, that is, steps
operating on constructs allowed in M, but not used in $. This can be easily done
by comparing the constructs of $ and the signatures of the basic translations
occurring in T (cf. Section 2). Then, we have the following general algorithm for
translating schemes.

Algorithm SCHEMA-TRANSLATION
Input: A scheme $ = (S, A) of a model My = (Ps,s)
and a model My = (Pe, v);
Output: A scheme S,ur = (Sout, A) allowed in M.
begin
T := MODEL-TRANSLATION (M, My, Rp);
for each rule R occurring in T do
if R has a null effect on S
then 7:=T — {R};
Sout = TT(S);
return(Sey:);
end.

Clearly, from a practical point of view, the translation between models are
computed once for all, at definition time, as described in the next section.

4 Implementation issues

On the basis of the theoretical results and the practical algorithms described in
the previous sections, we have designed a tool (whose architecture is reported in

Figure 4), called MDM (Multiple Data Models), for the management of multiple
models and the translation of schemes. More specifically, the operations offered
by this tool are the following:

1. The definition of a model by means of a (menu-driven} “Model Definition
Language”. This language has been designed according to a metamodel that
involves (at the moment) the following metaconstructs: lexical types, ab-
stract types, functions, binary and n-ary aggregations and generalizations
between abstracts. The task of defining models should not be done by any
user, but rather by a specialist that we call model engineer. His work is sup-
ported by a number of menus (for choosing the appropriate type of construct
between the available metaconstructs) and forms. When a new model M is
defined, the system automatically generates a default translation from the
supermodel to M (see below).

2. The specification of a scheme belonging to a model (previously defined) by
means of a graphical “Schema Definition Language”. This language is au-
tomatically provided with the definition of a model. More specifically, there
is a predefined graphical language for describing schemes that is expressive
enough for any scheme allowed in the metamodel. Then, the SDL for a cer-
tain model M is obtained by tailoring this general language to the features
of M. The work of defining schemes is supported by a flexible graphical
interface.

3. The request for an ad-hoc translation from a source model M, to a target
model M. The translation 1s permanently stored and can be later applied
to any scheme belonging to M.

4. The request for a translation of a scheme into a specific target model. The
system satisfies the request by applying the default translation for the target
model, or an ad-hoc translation previously computed if one exists.

The MDM tool consists of the following main components (see Figure 4).

— A Graphical User Interface. It allows the interaction with the system by means
of a graphical (as well as textual) language. We have used for this compo-
nent Diagram Server [8, 9], a tool developed at the University of Rome “La
Sapienza” that allows the editing and the automatic layout of complex di-
agrams. With this tool, it is possible to customize edges and nodes. This is
very useful in our context since, using this feature, the users can also specify
their preferred diagram style. The GUI also transforms schemes and models
from their external representation (diagrams) into an internal representa-
tion (and vice versa) whose structures have been designed according to the
notions of structure and pattern, respectively.

— A Model Manager. It takes as input data model specifications done with re-
spect to the metamodel, and store them in a Model Dictionary. The Model
Dictionary contains all the data models defined by the model engineer to-
gether with a special model, called supermodel (SM), that subsumes each
other model. The supermodel is automatically generated by the Model Man-
ager by finding the least upper bound of the sets of patterns describing the

Model
. | o | Trandation Dictionary
- | Model Manger - Generator
GUI ;
Y Y
Library of
- - - < Schema Trandations
- - | Schema Manager [~—» Trandator
A
Data
Dictionary

Fig. 4. The architecture of the MDM tool.

models in the Model Dictionary (cf. Section 2). According to the results in
Section 3, this model is the model of reference for generating schema transla-
tions. The system is able to store, together with a model description, further
informations like special constraints on the application of the constructs of
the model that cannot be described with the notion of pattern.

A Schema Manager. Similarly to the Model Manager, this component takes
as input the specification of a new scheme $ of a model M stored in the
Model Dictionary, checks whether $ belongs to the model M (according
to the definition of Section 2) and, if so, stores $ in a Schema Dictionary.
The Schema Dictionary is the repository of schemes and can store different
versions of the same scheme obtained after modifications and/or translations
of the original scheme (this relationship between schemes is implemented
by means of suitable scheme identifiers). Also in this case, a number of
information can be stored together with a scheme like integrity constraints
that cannot be expressed with the scheme itself.

A Translation Generator. This module generates new translations between
pairs of models, on the basis of a set of predefined basic translations R,
permanently stored in the Library of Translations. More specifically, 1t imple-
ments Algorithms REDUCTION-SET and MODEL-TRANSLATION described in
Section 3. The computed translations can be modified by the model engineer-
ing. All the translations generated by this module can be stored (according
to a request done by the Model Manager) in the Library of Translations (for
later use).

— A Schema Translator. It actually executes translations of schemes, by apply-
ing the appropriate translation generated by the Translation Generator, to
a source scheme received by the Schema Manager. Thus, the module imple-
ments Algorithm SCHEMA-TRANSLATION described in Section 3. The output
scheme is returned to the Schema Manager to be stored in the Schema Dic-
tionary or displayed through the GUI. Also in this case, the users can modify
the generated scheme.

The various components of MDM co-operate as follows.

1. When a new model M is defined, the Model Manager first checks whether
SM subsumes M or not. In the former case, the Model Manager stores M
in the Model Dictionary and sends a request to the Translation Generator
for the generation of the default translation (a reduction in this case) from
the SM to M which will be stored in the Library of Translations. In the
latter case, the Model Manager stores M and generates a new supermodel
SM’ that replaces SM in the Model Dictionary. Then, a request is sent to
the Translations Generator for translations from the new supermodel SM’
to each other model stored in the Model Dictionary. Those new transla-
tions replace the old default translations in the Library of Translations. This
is indeed a quite complex task that however should not be very frequent.
Actually, this work can be avoided by permanently storing in the Model
Dictionary a predefined supermodel that is the most general model we can
define with the given metamodel. However, with this approach, the quality
of translations is surely degraded (since they are generated with respect to
a model that is, in many cases, too general).

2. When a new scheme S for a model M is defined, the Schema Manager checks
whether S is allowed in M (cf. Section 2) by matching S with the definition
of M, which 1is stored in the Model Manager. If the matching is successful,
the scheme can be stored in the Data Dictionary. The schemes can also be
modified (by saving the old versions if necessary) and deleted.

3. When a user submits a request for a translation of a scheme S to a model M,
the Schema Translator loads from the Library of Translations, through the
Translation Generator, either the default translation Tjs for the model M
or an ad-hoc translation (if any). Then, the translation is applied according
to the algorithm described in Section 3.

During the various activities performed by the tool, some problems may
arise. First, it may happen that the metamodel is not enough expressive for
describing a new data model. However, metaconstructs and other features of the
metamodel are stored in special files accessible by the system only. This files
can be updated quite easily without modifying the code of the components of
the tool. Moreover, it can be the case that the basic translations used to build
more complex translations are not sufficient for a certain translation. This can
be solved by adding new basic translations in the Library of Translations, as
well as modifying the old once. It turns out that MDM is easily adaptable and

provides a very flexible framework for the development of more complex and
general environments.

5 An example of application

In this section we briefly present a practical example of application of method-
ologies and tools described in the previous sections.

(0,n) (o,n)
(0,n)

(Ln) Pli Pli

Fig.5. A set of patterns describing M;: a version of the E-R model.

We will consider two models M, and M; (both of them are indeed different
versions of the E-R model) and derive a translation from M; to M;. Then, this
translation will be applied to a specific schema of M;. The model M; 1s the
one described by the set of patterns in Figure 1. We recall that this model is a
version of the E-R model that involves binary relationships on entities which can
have simple and/or multivalued attributes (that is, attributes whose instances
are sets of values). The model M; is instead described by the set of patterns
reported in Figure 5. It is possible to see that this model is a version of the E-R,
model involving n-ary relationships on entities, which can have simple and/or
composite attributes (that is, attributes whose instances are sets of tuples of
values), and is-a relationships between entities. The translation from M; to M,
requires the following basic steps:

— The translation of n-ary relationships in binary ones;
— The translation of is-a relations between entities in relationships on entities
(actually, other translations could be applied here);

The translation of composite attributes in new entities;

— The translations of functions between entities with relationships on entities
(this function is needed to eliminate a side-effect produced by step 3 as
described in the following).

e P

Person

Employee ~<> Department
E'/ Tasks Name |%
Salary

Goal Date

Fig. 6. A schema for the model M, described by the patterns in Figure 5.

Now consider the scheme of the model M; in Figure 6. Note that this scheme
uses a notation that is slightly different from the notation used to describe the
model (specifically, entities are represented by rectangles and relationships be-
tween entities are represented by rhombs) but this is coherent with the possibil-
ity, offered by the tool, of customizing the diagrammatic notation for the model
constructs. The scheme represents persons and employees. The employees have
a salary and work in departments having a name. Tasks with specific goals, to
be executed within a certain date, are assigned to employees. This is represented
by means of a composite attribute of the entity Employee.

By applying the translation described above, we obtain the scheme reported
in Figure 7. Actually, the first step does not produce any effect on the scheme
since the relationships in original scheme are already binary (this step can be
indeed deleted before the execution of the translation as described in Section
3). The second step translates the is-a relation between the entities Person and
Employee in a relationship on them. The third step translates the composite
attribute Tasks of the entity Employee in a new entity. This step generates an
undesired side-effect: a function from the entity Employee to the entity Tasks,
which is a construct not allowed in the target model. This construct is eliminated
in the last step by replacing it with a relationship between the involved entities.

6 Conclusions

In this paper we have presented theoretical and practical aspects of the devel-
opment of MDM: a tool for the management of different data models and the

] B D

Person

Goal Date

iU
Tasks “Q Employee «{—<> Department

Ef/ Name%

Saary

Fig. 7. The result of the application, to the scheme in Figure 6, of the translation
from the model M, (described by the patterns in Figure 5) to the model M,
(described by the patterns in Figure 1).

translations of schemes from one model to another. We have started by pre-
senting a graph-theoretic framework for the description of models and schemes.
This formal framework allows us to compare different data models and to define
and characterize various interesting properties of schema translations. We have
then derived general methodologies for deriving translations that satisfy those
desirable properties. On the basis of these results, we have designed architec-
ture and functionalities of a tool that supports the desired features, showing the
feasibility of the approach and the practical impact of the formal results.

We believe that this research brings a contribution not only to the devel-
opment of new generation database design tools, but also to several problems
related to cooperative activities within heterogeneous database environments.
The formal basis and the prototypical tool yield promising contexts for further
theoretical and practical investigations, on these and related issues. For instance,
it could be very interesting to extend the approach presented in this paper to be-
havioral models (e.g. DFD, SADT). Currently, from a theoretical point of view,
we are working on extending the results to more general cases. From a practical
point of view we are working on the development of a solid prototype of the
system by testing its capabilities in complex cases.

References

1. S. Abiteboul and R. Hull. Restructuring hierarchical database objects. Theoretical
Computer Science, 62(3):3-38, 1988.

2. P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equivalence
between relational database schemata. Theoretical Computer Science, 19(2):267—
285, 1982.

10.

11.

12.

13.

14.

15.

16.

17.

P. Atzeni and R. Torlone. A metamodel approach for the management of multiple
models and the translation of schemes. Information Systems, 18(6):349-362, 1993.
P. Atzeni, R. Torlone. Schema Translation between Heterogeneous Data Models in
a Lattice Framework. In Swxth IFIP TC-2 Working Conference on Data Semantics
(DS-6), Atalanta, pages 218-227, 1995.

. T. Barsalou and D. Gangopadhyay. M(DM): An open framework for interopera-

tion of multimodel multidatabase systems. In International Conference on Data
Engineering, pages 218-227, Tempe, AZ, February 1992.

C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin and Cummings Publ. Co., Menlo Park, Califor-
nia, 1992.

P.P. Chen. The entity-relationship model: toward a unified view of data. ACM
Trans. on Database Syst., 1(1):9-36, March 1976.

G. Di Battista, G. Liotta, and S. Vargiu. Diagram Server. Journal of Visual
Languages and Computing, 1995. To appear.

G. Di Battista et al. A tailorable and extensible automatic layout facility. /TEFFE
Workshop on Visual Languages, pages 68-73, 1991.

R.B. Hull. Relative information capacity of simple relational schemata. SIAM
Journal on Computing, 15(3):856-886, 1986.

R.B. Hull and R. King. Semantic database modelling: survey, applications and
research issues. ACM Computing Surveys, 19(3):201-260, September 1987.

L.A. Kalinichenko. Methods and tools for equivalent data model mapping con-
struction. In EDBT’90 (Int. Conf. on Extending Database Technology), Venezia,
Lecture Notes in Computer Science 416, pages 92-119, Springer-Verlag, 1990.
Y.E. Lien. On the equivalence of database models. Journal of the ACM, 29(2):333—
362, 1982.

R.J. Miller, Y.E. loannidis, and R. Ramakrishnan. The use of information capacity
in schema integration and translation. In Fighteenth International Conf. on Very
Large Data Bases, Dublin, 1993.

J. Rissanen. On equivalence of database schemes. In ACM SIGACT SIGMOD
Symp. on Principles of Database Systems, pages 23-26, 1982.

A.P. Sheth and J.A. Larson. Federated database systems for managing distributed
database systems for production and use. ACM Computing Surveys, 22(3):183-
236, 1990.

D. Tsichritzis and F.H. Lochovski. Data Models. Prentice-Hall, Englewood Cliffs,
New Jersey, 1982.

This article was processed using the [#TEX macro package with LLNCS style

