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The Need for String Joins

Service A

…

Comp. Sci. Dept.

Hatronic Inc.

Euroaft Corp.

KIA International

John Paul McDougal

Divesh Srivastava

Service B

KIA

Dept. of Comp. Sci.

John P. McDougal

Divesh Shrivastava

Euroaft

Hatronic Corp.

Eurodraft Corp.

Substantial amounts of data in existing RDBMSs are strings
There is a need to correlate data stored in different tables

Applications: data cleaning, data integration
Example: Find common customers across different services
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Problems with Exact String Joins

Typing mistakes, abbreviations, different conventions
Standard equality joins do not “forgive such mistakes”

⋈
= 
∅

Service A

…

Comp. Sci. Dept.

Hatronic Inc.

Euroaft Corp.

KIA International

John Paul McDougal

Divesh Srivastava

Service B

KIA

Dept. of Comp. Sci.

John P. McDougal

Divesh Shrivastava

Euroaft

Hatronic Corp.

Eurodraft Corp.
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Matching String Attributes

Match entries with typing mistakes
Divesh Srivastava vs. Divesh Shrivastava

Match entries with abbreviations
Euroaft Corporation vs. Euroaft Corp.

Match entries with different conventions
Comp. Sci. Dept. vs. Dept. of Comp. Sci.

Need for a similarity metric!
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Using String Edit Distance

String Edit Distance: Number of single character insertions, 
deletions, and modifications to transform one string to the other

→ 1Divesh Shrivastava-Divesh Srivastava

→ 3Dept. of Comp. Sci.-Dept. Comp. Sci. 

→ 12Euroaft-Euroaft Corporation

Good for spelling errors, short word inserts/deletes
Problems with word order variations, long word inserts/deletes
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Common 
token 

(low weight)

Infrequent 
token 

(high weight)

Using Cosine Similarity
Similar string pairs should share “infrequent” tokens

(tokens can be words, groups of characters, …)

EUROAFT≈EUROAFT CORPORATION

HATRONIC CORPORATION≠EUROAFT CORPORATION

Similarity = Σ weight(token, t1) * weight(token, t2)all tokens

→ ed_dist: 12

→ ed_dist: 6

Good for common token inserts/deletes, token order variations
Problems with rare token inserts/deletes, rare misspellings
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Approximate String Joins

No native support for approximate string joins in RDBMSs

Two existing (straightforward) solutions:
Join data outside of DBMS
Join data via user-defined functions (UDFs) inside DBMS
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AS Joins Outside DBMS

1. Export data
2. Join outside of DBMS
3. Import the result

Main advantage: 
Can exploit specialized tools (e.g., address matching) and 
business rules, without restrictions from DBMS functionality

Disadvantages: 
Substantial amounts of data to be exported/imported
Cannot be easily integrated with other DBMS processing steps
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AS Joins Using UDFs
1. Write a UDF to check if two strings match within distance K
2. Write an SQL statement that applies the UDF to the string pairs 

SELECT R.sA, S.sA
FROM   R, S
WHERE  approx_string_match(R.sA, S.sA, K)

Main advantage: 
Easily integrated with other DBMS processing steps

Main disadvantage: 
Inefficient: UDF applied to entire cross-product of relations
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Our Approach: Use Q-grams

Intuition
Similar strings have many common substrings (q-grams)
Preprocess string data, generate auxiliary tables of substrings
Perform “approximate string join”, exploiting RDBMS capabilities of 
exact joins and aggregations

Advantages
No modification of underlying RDBMS needed.
Can leverage the RDBMS query optimizer.
Much more efficient than the approach based on naive UDFs
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What is a Q-gram?

Q-gram: A sequence of q characters of the original string

Split each string into all overlapping q-grams
string with length L → L + q - 1  q-grams

Example: q=3
srivastava = ##s, #sr, sri, riv, iva, vas, ast, sta, tav, ava, va$, a$$
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Q-grams and String Edit Distance

Each edit distance operation affects at most q q-grams

Two strings S1 and S2 with string edit distance ≤ K have at least 
[max(S1.len, S2.len) + q - 1] – Kq q-grams in common

Example:
srivastava = ##s, #sr, sri, riv, iva, vas, ast, sta, tav, ava, va$, a$$
shrivastava = ##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, a$$

Useful filter: eliminate all string pairs without "enough" common q-
grams (no false dismissals!)



7

12/12/2003 AT&T Labs-Research 13

Words and Cosine Similarity

Using words as tokens:

Common 
token 

(low weight)

Infrequent token 
(high weight)

EUROAFT≈EUROAFT CORP

HATRONIC CORP≠EUROAFT CORP

Split each entry into words
Similar entries share 
infrequent words

Problems with misspellings, abbreviations
Euroaft Corporation ≠ Eurodraft Corp.

“WHIRL” – W.Cohen, SIGMOD’98
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Q-grams and Cosine Similarity

Use q-grams as tokens:

Euroaft Corporation

##E, #Eu, Eur, uro, roa, oaf, aft, …, Cor, orp, rpo, por, …

Eurodraft Corp.

##E, #Eu, Eur, uro, rod, odr, dra, raf, aft, …, Cor, orp, rp., …

Similar entries share many, infrequent q-grams

Good for common misspellings, abbreviations 
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Matching Strings Efficiently in SQL

Problem 1:
Find all pairs of strings t1, t2 with string edit distance ≤ K

Problem 2:
Find all pairs of strings t1, t2 with cosine similarity ≥ φ where
cosine similarity = Σ weight(token, t1) * weight(token, t2)

SQL-only solution desirable:
Scalability
Robustness
Ease of deployment

token
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Problem 1: Edit Distance in DBMS

LENGTH FILTER: two strings S1 and S2 with edit distance ≤ K
cannot differ in length by > K

COUNT FILTER: two strings S1 and S2 with edit distance ≤ K 
have ≥ [max(S1.len, S2.len) + q - 1] – Kq q-grams in common

Create auxiliary DBMS tables with tuples of the form:
<sid, qgram>, join and aggregate these tables

POSITION FILTER: corresponding q-grams of S1 and S2 cannot 
differ in their positions by more than K

Create auxiliary DBMS tables with tuples of the form:
<sid, qgram, pos>, join and aggregate these tables
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Problem 1: The SQL Statement
SELECT R1.sid, R2.sid
FROM R1, R1Q, R2, R2Q
WHERE R1.sid = R1Q.sid AND R2.sid = R2Q.sid AND

R1Q.qgram = R2Q.qgram AND 
abs(R1Q.pos – R2Q.pos) <= k AND
abs(LEN(R1.str) – LEN(R2.str)) <= k AND
(LEN(R1.str)+q-1 > k*q OR LEN(R2.str)+q-1 > k*q)

GROUP BY  R1.sid, R2.sid, R1.str, R2.str
HAVING COUNT(*) >= max(LEN(R1.str), LEN(R2.str))+q-1 - k*q AND

edit_distance(R1.str, R2.str, k)

UNION ALL

SELECT R1.sid, R2.sid
FROM R1, R2
WHERE LEN(R1.str)+q-1 <= k*q AND LEN(R2.str)+q-1 <= k*q AND

abs(LEN(R1.str) - LEN(R2.str)) <= k AND
edit_distance(R1.str, R2.str, k)
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Problem 1: Experimental Data

Three customer data sets from AT&T Worldnet service
(a) set1 with about 40K strings
(b) set2 and (c) set3 with about 30K strings each
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Problem 1: DBMS Setup

Used Oracle 8i (supports UDFs), on Sun 20 Enterprise Server

Materialized the q-gram tables with entries <sid, qgram, pos> (less 
then 2 minutes per table)

Tested configurations with and without indexes on the auxiliary q-gram 
tables (less than 5 minutes to generate each index)

The generation time for the auxiliary q-gram tables and indexes is 
small: even on-the-fly materialization is feasible
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Problem 1: RDBMS Query Plans

Naive approach with UDFs: nested-loops joins (prohibitively slow 
even for small data sets)

Q-gram approach: usually sort-merge joins 

In our prototype implementation, sort-merge joins is the fastest too
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Problem 1: Naïve UDFs vs. Q-grams

10

100

1000

10000

Q1 (UDF only) Q4 (Filtering)

Q1 (UDF only) 1954 2028 2044

Q4 (Filtering) 48 68 91

k=1 k=2 k=3

For a subset of set1, our technique was 20 to 30 times faster 
than the naïve use of UDFs
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Problem 1: Effect of Filters
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LENGTH FILTER: 40-70% reduction for set1 (small length deviation)

90-98% reductions for set2, set3 (big length deviation)

+COUNT FILTER:  > 99% reduction

+POSITION FILTER: ~ additional 50% reduction
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Problem 1: Effect of Q-gram Size
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For the given data sets, q=2 worked best
q=2 is small enough to avoid, as much as possible, the space 
overhead for the auxiliary tables
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R2

Problem 2: Cosine Similarity in DBMS
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Problem 2: Naïve SQL

Computes similarity for many useless pairs

Expensive operation!

SELECT r1w.tid AS tid1, r2w.tid AS tid2
FROM R1Weights r1w, R2Weights r2w
WHERE r1w.token = r2w.token
GROUP BY r1w.tid, r2w.tid
HAVING SUM(r1w.weight*r2w.weight) ≥ φ
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Problem 2: Sampling Step

Cosine similarity = Σ weight(token, t1) * weight(token, t2)
Products cannot be high when weight is small
Can (safely) drop low weights from R2Weights (adapted  from 
[Cohen & Lewis, SODA97] for efficient execution in an RDBMS)

1

2

2

1 0.9144EUROAFT

0.00504INC

0.01247CORP

…

0.8419HATRONIC

WToken

Eliminates low similarity pairs 
(e.g., “EUROAFT INC” with “HATRONIC INC”)

R2Weights

→
using token 

weights, 
sample

20 times

18 (18/20=0.90)1     EUROAFT

17 (17/20=0.85)2     HATRONIC

#TIMES SAMPLEDToken

R2Sample
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Problem 2: Sampling-Based Joins
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Problem 2: Sampling-Based SQL

Fully implemented in pure SQL!

SELECT r1w.tid AS tid1, r2s.tid AS tid2
FROM R1Weights r1w, R2Sample r2s, R2sum r2sum
WHERE r1w.token = r2s.token AND r1w.token = r2sum.token
GROUP BY r1w.tid, r2s.tid
HAVING SUM(r1w.weight*r2sum.total*r2s.c) ≥ S*φ
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Problem 2: Experimental Setup
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database, split into R1
(26,000 entries) and R2
(14,000 entries)
Tokenizations:

Words
Q-grams, q=2  & q=3

Methods  compared:
Variations of sample-based joins
Baseline in SQL
WHIRL [SIGMOD98],  adapted  for handling q-grams
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Problem 2: Metrics

Execute the (approximate) join for similarity ≥ φ

Precision: (measures accuracy)
Fraction of the pairs in the answer with real similarity ≥ φ

Recall:  (measures completeness)
Fraction of the pairs with real similarity ≥ φ that are also in  
the answer

Execution time
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Problem 2: Comparing with WHIRL
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Sample-based Joins: Good recall across similarity thresholds. Retrieves
many interesting matches (many good matches have similarity ~0.5)
WHIRL: Low recall (memory problems) – Misses many good matches
WHIRL: Perfect precision result of post-join step
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Problem 2: Changing Sample Size
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Increased sample size → More accurate weight estimation → Better 
recall, precision
Drawback:  Increased execution time (more pairs found)

3-grams, S=128
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Problem 2: Execution Time
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3-grams
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Problem 2: Evaluation Summary

Sample-based joins preferable when recall is important. WHIRL 
good for very high thresholds  (“a few good matches”)

Cosine similarity with q-grams gives better results (semantically). 
Higher execution time compared to word-based cosine similarity

Sample-based joins more adaptable and flexible:
…easier to tune
…more scalable 
…more robust
…easy to deploy in any environment
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Conclusions

We introduced techniques for mapping approximate string joins 
into “vanilla” SQL expressions, each with its own advantages:

String edit distance: no false positives
Cosine similarity: tradeoff between recall and efficiency

Our techniques do not require modifying the underlying RDBMS
Significantly outperform existing approaches

Other applications?
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