
1

Approximate String Joins

Divesh Srivastava
AT&T Labs-Research

12/12/2003 AT&T Labs-Research 2

The Need for String Joins

Service A

…

Comp. Sci. Dept.

Hatronic Inc.

Euroaft Corp.

KIA International

John Paul McDougal

Divesh Srivastava

Service B

KIA

Dept. of Comp. Sci.

John P. McDougal

Divesh Shrivastava

Euroaft

Hatronic Corp.

Eurodraft Corp.

Substantial amounts of data in existing RDBMSs are strings
There is a need to correlate data stored in different tables

Applications: data cleaning, data integration
Example: Find common customers across different services

2

12/12/2003 AT&T Labs-Research 3

Problems with Exact String Joins

Typing mistakes, abbreviations, different conventions
Standard equality joins do not “forgive such mistakes”

⋈
=
∅

Service A

…

Comp. Sci. Dept.

Hatronic Inc.

Euroaft Corp.

KIA International

John Paul McDougal

Divesh Srivastava

Service B

KIA

Dept. of Comp. Sci.

John P. McDougal

Divesh Shrivastava

Euroaft

Hatronic Corp.

Eurodraft Corp.

12/12/2003 AT&T Labs-Research 4

Matching String Attributes

Match entries with typing mistakes
Divesh Srivastava vs. Divesh Shrivastava

Match entries with abbreviations
Euroaft Corporation vs. Euroaft Corp.

Match entries with different conventions
Comp. Sci. Dept. vs. Dept. of Comp. Sci.

Need for a similarity metric!

3

12/12/2003 AT&T Labs-Research 5

Using String Edit Distance

String Edit Distance: Number of single character insertions,
deletions, and modifications to transform one string to the other

→ 1Divesh Shrivastava-Divesh Srivastava

→ 3Dept. of Comp. Sci.-Dept. Comp. Sci.

→ 12Euroaft-Euroaft Corporation

Good for spelling errors, short word inserts/deletes
Problems with word order variations, long word inserts/deletes

12/12/2003 AT&T Labs-Research 6

Common
token

(low weight)

Infrequent
token

(high weight)

Using Cosine Similarity
Similar string pairs should share “infrequent” tokens

(tokens can be words, groups of characters, …)

EUROAFT≈EUROAFT CORPORATION

HATRONIC CORPORATION≠EUROAFT CORPORATION

Similarity = Σ weight(token, t1) * weight(token, t2)all tokens

→ ed_dist: 12

→ ed_dist: 6

Good for common token inserts/deletes, token order variations
Problems with rare token inserts/deletes, rare misspellings

4

12/12/2003 AT&T Labs-Research 7

Approximate String Joins

No native support for approximate string joins in RDBMSs

Two existing (straightforward) solutions:
Join data outside of DBMS
Join data via user-defined functions (UDFs) inside DBMS

12/12/2003 AT&T Labs-Research 8

AS Joins Outside DBMS

1. Export data
2. Join outside of DBMS
3. Import the result

Main advantage:
Can exploit specialized tools (e.g., address matching) and
business rules, without restrictions from DBMS functionality

Disadvantages:
Substantial amounts of data to be exported/imported
Cannot be easily integrated with other DBMS processing steps

5

12/12/2003 AT&T Labs-Research 9

AS Joins Using UDFs
1. Write a UDF to check if two strings match within distance K
2. Write an SQL statement that applies the UDF to the string pairs

SELECT R.sA, S.sA
FROM R, S
WHERE approx_string_match(R.sA, S.sA, K)

Main advantage:
Easily integrated with other DBMS processing steps

Main disadvantage:
Inefficient: UDF applied to entire cross-product of relations

12/12/2003 AT&T Labs-Research 10

Our Approach: Use Q-grams

Intuition
Similar strings have many common substrings (q-grams)
Preprocess string data, generate auxiliary tables of substrings
Perform “approximate string join”, exploiting RDBMS capabilities of
exact joins and aggregations

Advantages
No modification of underlying RDBMS needed.
Can leverage the RDBMS query optimizer.
Much more efficient than the approach based on naive UDFs

6

12/12/2003 AT&T Labs-Research 11

What is a Q-gram?

Q-gram: A sequence of q characters of the original string

Split each string into all overlapping q-grams
string with length L → L + q - 1 q-grams

Example: q=3
srivastava = ##s, #sr, sri, riv, iva, vas, ast, sta, tav, ava, va$, a$$

12/12/2003 AT&T Labs-Research 12

Q-grams and String Edit Distance

Each edit distance operation affects at most q q-grams

Two strings S1 and S2 with string edit distance ≤ K have at least
[max(S1.len, S2.len) + q - 1] – Kq q-grams in common

Example:
srivastava = ##s, #sr, sri, riv, iva, vas, ast, sta, tav, ava, va$, a$$
shrivastava = ##s, #sh, shr, hri, riv, iva, vas, ast, sta, tav, ava, va$, a$$

Useful filter: eliminate all string pairs without "enough" common q-
grams (no false dismissals!)

7

12/12/2003 AT&T Labs-Research 13

Words and Cosine Similarity

Using words as tokens:

Common
token

(low weight)

Infrequent token
(high weight)

EUROAFT≈EUROAFT CORP

HATRONIC CORP≠EUROAFT CORP

Split each entry into words
Similar entries share
infrequent words

Problems with misspellings, abbreviations
Euroaft Corporation ≠ Eurodraft Corp.

“WHIRL” – W.Cohen, SIGMOD’98

12/12/2003 AT&T Labs-Research 14

Q-grams and Cosine Similarity

Use q-grams as tokens:

Euroaft Corporation

##E, #Eu, Eur, uro, roa, oaf, aft, …, Cor, orp, rpo, por, …

Eurodraft Corp.

##E, #Eu, Eur, uro, rod, odr, dra, raf, aft, …, Cor, orp, rp., …

Similar entries share many, infrequent q-grams

Good for common misspellings, abbreviations

8

12/12/2003 AT&T Labs-Research 15

Matching Strings Efficiently in SQL

Problem 1:
Find all pairs of strings t1, t2 with string edit distance ≤ K

Problem 2:
Find all pairs of strings t1, t2 with cosine similarity ≥ φ where
cosine similarity = Σ weight(token, t1) * weight(token, t2)

SQL-only solution desirable:
Scalability
Robustness
Ease of deployment

token

12/12/2003 AT&T Labs-Research 16

Problem 1: Edit Distance in DBMS

LENGTH FILTER: two strings S1 and S2 with edit distance ≤ K
cannot differ in length by > K

COUNT FILTER: two strings S1 and S2 with edit distance ≤ K
have ≥ [max(S1.len, S2.len) + q - 1] – Kq q-grams in common

Create auxiliary DBMS tables with tuples of the form:
<sid, qgram>, join and aggregate these tables

POSITION FILTER: corresponding q-grams of S1 and S2 cannot
differ in their positions by more than K

Create auxiliary DBMS tables with tuples of the form:
<sid, qgram, pos>, join and aggregate these tables

9

12/12/2003 AT&T Labs-Research 17

Problem 1: The SQL Statement
SELECT R1.sid, R2.sid
FROM R1, R1Q, R2, R2Q
WHERE R1.sid = R1Q.sid AND R2.sid = R2Q.sid AND

R1Q.qgram = R2Q.qgram AND
abs(R1Q.pos – R2Q.pos) <= k AND
abs(LEN(R1.str) – LEN(R2.str)) <= k AND
(LEN(R1.str)+q-1 > k*q OR LEN(R2.str)+q-1 > k*q)

GROUP BY R1.sid, R2.sid, R1.str, R2.str
HAVING COUNT(*) >= max(LEN(R1.str), LEN(R2.str))+q-1 - k*q AND

edit_distance(R1.str, R2.str, k)

UNION ALL

SELECT R1.sid, R2.sid
FROM R1, R2
WHERE LEN(R1.str)+q-1 <= k*q AND LEN(R2.str)+q-1 <= k*q AND

abs(LEN(R1.str) - LEN(R2.str)) <= k AND
edit_distance(R1.str, R2.str, k)

12/12/2003 AT&T Labs-Research 18

Problem 1: Experimental Data

Three customer data sets from AT&T Worldnet service
(a) set1 with about 40K strings
(b) set2 and (c) set3 with about 30K strings each

0

2000

4000

6000

8000

10000

12000

1 6 11 16 21 26 31

String Length

Nu
m

be
r o

f S
tr

in
gs

0

200

400

600

800

1000

1200

1 9 17 25 33 41 49 57 65

String Length

Nu
m

be
r

of
 S

tr
in

gs

0

100

200

300

400

500

600

1 7 13 19 25 31 37 43 49 55 61 67

String Length

Nu
m

be
r o

f S
tri

ng
s

10

12/12/2003 AT&T Labs-Research 19

Problem 1: DBMS Setup

Used Oracle 8i (supports UDFs), on Sun 20 Enterprise Server

Materialized the q-gram tables with entries <sid, qgram, pos> (less
then 2 minutes per table)

Tested configurations with and without indexes on the auxiliary q-gram
tables (less than 5 minutes to generate each index)

The generation time for the auxiliary q-gram tables and indexes is
small: even on-the-fly materialization is feasible

12/12/2003 AT&T Labs-Research 20

Problem 1: RDBMS Query Plans

Naive approach with UDFs: nested-loops joins (prohibitively slow
even for small data sets)

Q-gram approach: usually sort-merge joins

In our prototype implementation, sort-merge joins is the fastest too

11

12/12/2003 AT&T Labs-Research 21

Problem 1: Naïve UDFs vs. Q-grams

10

100

1000

10000

Q1 (UDF only) Q4 (Filtering)

Q1 (UDF only) 1954 2028 2044

Q4 (Filtering) 48 68 91

k=1 k=2 k=3

For a subset of set1, our technique was 20 to 30 times faster
than the naïve use of UDFs

12/12/2003 AT&T Labs-Research 22

Problem 1: Effect of Filters

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

k=1 k=2 k=3

Ca
nd

id
at

e
Se

t S
iz

e

CP L LP LC LPC Real

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

k=1 k=2 k=3

Ca
nd

id
at

e
Se

t S
iz

e

CP L LP LC LPC Real

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

k=1 k=2 k=3

C
an

di
da

te
 S

et
 S

iz
e

CP L LP LC LPC Real

LENGTH FILTER: 40-70% reduction for set1 (small length deviation)

90-98% reductions for set2, set3 (big length deviation)

+COUNT FILTER: > 99% reduction

+POSITION FILTER: ~ additional 50% reduction

12

12/12/2003 AT&T Labs-Research 23

Problem 1: Effect of Q-gram Size

1.E+05

1.E+06

1.E+07

set1 set2 set3

Ca
nd

id
at

e
Se

t S
ize

q=1 q=2 q=3 q=4 q=5

(a)

1.E+06

1.E+07

1.E+08

set1 set2 set3

Ca
nd

id
at

e
Se

t S
ize

q=1 q=2 q=3 q=4 q=5

(b)

For the given data sets, q=2 worked best
q=2 is small enough to avoid, as much as possible, the space
overhead for the auxiliary tables

12/12/2003 AT&T Labs-Research 24

R2

Problem 2: Cosine Similarity in DBMS

2

1

Name

…

HATRONIC INC

EUROAFT CORP

3

2

1

Name

…

EUROAFT CORP

EUROAFT INC

HATRONIC CORP

0.05HATRONIC CORPEUROAFT CORP

HATRONIC INC

HATRONIC INC

EUROAFT CORP

EUROAFT CORP

R1

EUROAFT INC

HATRONIC CORP

EUROAFT CORP

EUROAFT INC

R2

0.04

0.98

Similarity

1.00

0.98

Create in SQL relations RiWeights (token weights from Ri)

2

2

1

1

…

INC

HATRONIC

CORP

EUROAFT

Token

0.14

0.99

W

0.20

0.98

R1Weights

0.25CORP3

3

2

2

1

1

0.20CORP

0.30INC

0.97EUROAFT

…

EUROAFT

HATRONIC

Token

0.95

0.98

W

R2Weights

R1

Compute similarity of each tuple pair

13

12/12/2003 AT&T Labs-Research 25

Problem 2: Naïve SQL

Computes similarity for many useless pairs

Expensive operation!

SELECT r1w.tid AS tid1, r2w.tid AS tid2
FROM R1Weights r1w, R2Weights r2w
WHERE r1w.token = r2w.token
GROUP BY r1w.tid, r2w.tid
HAVING SUM(r1w.weight*r2w.weight) ≥ φ

12/12/2003 AT&T Labs-Research 26

Problem 2: Sampling Step

Cosine similarity = Σ weight(token, t1) * weight(token, t2)
Products cannot be high when weight is small
Can (safely) drop low weights from R2Weights (adapted from
[Cohen & Lewis, SODA97] for efficient execution in an RDBMS)

1

2

2

1 0.9144EUROAFT

0.00504INC

0.01247CORP

…

0.8419HATRONIC

WToken

Eliminates low similarity pairs
(e.g., “EUROAFT INC” with “HATRONIC INC”)

R2Weights

→
using token

weights,
sample

20 times

18 (18/20=0.90)1 EUROAFT

17 (17/20=0.85)2 HATRONIC

#TIMES SAMPLEDToken

R2Sample

14

12/12/2003 AT&T Labs-Research 27

Problem 2: Sampling-Based Joins

2

1

Name

…

HATRONIC INC

EUROAFT CORP

2

2

1

1

…

INC

HATRONIC

CORP

EUROAFT

Token

0.01

0.98

W

0.02

0.98

3

3

2

2

1

1

0.02CORP

0.05INC

0.97EUROAFT

CORP

EUROAFT

HATRONIC

Token

0.95

0.98

W

0.03

HATRONIC INC

EUROAFT CORP

EUROAFT CORP

R1

HATRONIC CORP

EUROAFT CORP

EUROAFT INC

R2

0.98

Similarity

0.9

0.98

R1Weights R2Sample
R1

12/12/2003 AT&T Labs-Research 28

Problem 2: Sampling-Based SQL

Fully implemented in pure SQL!

SELECT r1w.tid AS tid1, r2s.tid AS tid2
FROM R1Weights r1w, R2Sample r2s, R2sum r2sum
WHERE r1w.token = r2s.token AND r1w.token = r2sum.token
GROUP BY r1w.tid, r2s.tid
HAVING SUM(r1w.weight*r2sum.total*r2s.c) ≥ S*φ

15

12/12/2003 AT&T Labs-Research 29

Problem 2: Experimental Setup

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
similarity

nu
m

be
r o

f t
up

le
 p

ai
rs

Q-grams, q=2
Q-grams, q=3
Words

40,000 entries from
AT&T customer
database, split into R1
(26,000 entries) and R2
(14,000 entries)
Tokenizations:

Words
Q-grams, q=2 & q=3

Methods compared:
Variations of sample-based joins
Baseline in SQL
WHIRL [SIGMOD98], adapted for handling q-grams

12/12/2003 AT&T Labs-Research 30

Problem 2: Metrics

Execute the (approximate) join for similarity ≥ φ

Precision: (measures accuracy)
Fraction of the pairs in the answer with real similarity ≥ φ

Recall: (measures completeness)
Fraction of the pairs with real similarity ≥ φ that are also in
the answer

Execution time

16

12/12/2003 AT&T Labs-Research 31

Problem 2: Comparing with WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

similarity

pr
ec

is
io

n

R1R2
sR1R2

R1sR2
sR1sR2
WHIRL

Sample-based Joins: Good recall across similarity thresholds. Retrieves
many interesting matches (many good matches have similarity ~0.5)
WHIRL: Low recall (memory problems) – Misses many good matches
WHIRL: Perfect precision result of post-join step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

re
ca

ll

R1R2
sR1R2
R1sR2
sR1sR2
WHIRL

3-grams, S=128

12/12/2003 AT&T Labs-Research 32

Problem 2: Changing Sample Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

re
ca

ll

S=2
S=32
S=64
S=128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
similarity

pr
ec

is
io

n

S=2
S=32
S=64
S=128

Increased sample size → More accurate weight estimation → Better
recall, precision
Drawback: Increased execution time (more pairs found)

3-grams, S=128

17

12/12/2003 AT&T Labs-Research 33

Problem 2: Execution Time

0.1

1

10

100

1000

10000

S=1 S=2 S=4 S=8 S=16 S=32 S=64 S=128 S=256
sample size

ex
ec

ut
io

n
tim

e
(s

ec
s)

WHIRL sR1R2

WHIRL and sample-based joins ‘break-even’ at S ~ 64, 128
Baseline in SQL >24hrs, never finished (out of disk space)

3-grams

12/12/2003 AT&T Labs-Research 34

Problem 2: Evaluation Summary

Sample-based joins preferable when recall is important. WHIRL
good for very high thresholds (“a few good matches”)

Cosine similarity with q-grams gives better results (semantically).
Higher execution time compared to word-based cosine similarity

Sample-based joins more adaptable and flexible:
…easier to tune
…more scalable
…more robust
…easy to deploy in any environment

18

12/12/2003 AT&T Labs-Research 35

Related Work
Fellegi & Sunter. A theory for record linkage. JASA 1969.
Winkler. Matching and record linkage. Business Survey Methods. Wiley, 1995.

Hernandez & Stolfo. The merge/purge problem for large databases. SIGMOD 1995.
Galhardas et al. Declarative data cleaning: Language, model, … VLDB 2001.
Sarawagi & Bhamidipaty. Interactive deduplication using active learning. KDD 2002.
Ananthakrishna et al. Eliminating fuzzy duplicates in data warehouses. VLDB 2002.
Dasu & Johnson: Exploratory data mining and data cleaning, Wiley, 2003

Tejada, Knoblock & Minton. Learning domain-independent string … KDD 2002.

Navarro. A guided tour to approximate string matching. ACM Comp. Surveys, 2001.

12/12/2003 AT&T Labs-Research 36

Conclusions

We introduced techniques for mapping approximate string joins
into “vanilla” SQL expressions, each with its own advantages:

String edit distance: no false positives
Cosine similarity: tradeoff between recall and efficiency

Our techniques do not require modifying the underlying RDBMS
Significantly outperform existing approaches

Other applications?

19

12/12/2003 AT&T Labs-Research 37

Acknowledgements

Joint work with:
Luis Gravano (Columbia University)
Panagiotis G. Ipeirotis (Columbia University)
H. V. Jagadish (University of Michigan)
Nick Koudas (AT&T Labs-Research)
S. Muthukrishnan (Rutgers University, AT&T Labs-Research)

Based on papers in VLDB’01 and WWW’03, and poster in ICDE’03

