
1

Basi di dati distribuite

Paolo Atzeni, Stefano Ceri
30/05/2005

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 2

Due esempi introduttivi

• Sistema informativo aziendale:
– passaggio da base dati centralizzata a

distribuita
• Sistema cooperativo:

– Il progetto “Servizi alle imprese”

(esempi tratti da materiale del prof Batini)

2

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 3

Struttura della organizzazione

Azienda

Filiale di Roma Filiale di Roma Filiale di Roma

Un sistema informativo aziendale

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 4

Base di dati centralizzata

Nodo 1
Roma

Nodo 3
Padova

Nodo 2
Milano

-Personale
-Progettisti
-Vendite

- Dipartimenti
- Progetti
- Contratti
- Dati di vendita

3

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 5

Base di dati distribuita con DBMS distribuito

AP

DP

Nodo 1
Roma

AP

Nodo 3
Padova

DP

Nodo 2
Milano

- Progettisti Roma
- Dipartimenti Roma
- Progetti Roma
- Contratti Roma

- Contratti Padova
- Dipendenti Padova

- Progettisti Milano + Roma
- Personale vendite
- Dati di vendita
- Dipartimenti Milano
- Progetti Milano
-Contratti Milano

AP

DP

Application processing

Data processing

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 6

Il progetto “Servizi alle imprese”

• Scopo : sostituire le notifiche di creazione e variazione che le
imprese devono fare a Inps, Inail, Camere di commercio ……

Inps Inail CamereC

Variazione
di indirizzo

Variazione
di indirizzo Variazione

di indirizzo

4

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 7

• … con un sistema condiviso …

Inps Camere C.Inail

sistema condiviso

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 8

• … con una unica comunicazione

amm.ne 1 amm.ne 2 amm.ne 3

Variazione
di indirizzoVariazione

di indirizzo

Variazione
di indirizzo

5

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 9

• … con una unica comunicazione

amm.ne 1 amm.ne 2 amm.ne 3

Variazione
di indirizzo

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 10

Un sistema cooperativo

• È necessario un nuovo sistema che:
– interagisce con i sistemi preesistenti
– gestisce propri dati

• Note:
– è necessaria una riorganizzazione delle attività (il problema

non è solo tecnologico)
– i sistemi preesistenti continuano a svolgere tutte (o quasi) le

attività precedenti, insieme ad altre, nuove

6

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 11

Paradigms for data distribution

• Client-server architecture: separation of the database server
from the client

• Distributed databases: several database servers used by the
same application

• Cooperative database applications: each server maintains its
autonomy

• Replicated databases: data logically representing the same
information and physically stored on different servers

• Data warehouses: servers specialized for the management of
data dedicated to decision support.

• Parallel databases: several data storage devices and
processors operate in parallel for increasing performances

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 14

Client-server architecture

• Client-server: a general model of interaction between software
processes, where there are processes of two types:
– clients (which require services)
– servers (which offer services)

• Requires a precise definition of a service interface, which lists
the services offered by the server

• The client process performs an active role, the server process
is reactive

• Normally, a client process requests few services in sequence
from one or more server processes, while a process server
responds to multiple requests from many process clients.

7

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 15

Client server architecture and data
management

• In data management, allocation of client and server processes
to distinct computers is now widespread, because:
– The functions of client and server are well identified
– They give rise to a convenient separation of design and

management activities
• SQL offers an ideal programming paradigm for the identification

of the ‘service interface’
– SQL queries are formulated by the client and sent to the

server
– The query results are calculated by the server and returned

to the client
– The "reasonable" standardization, portability and

interoperability of SQL give good flexibility and reuse

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 16

Allocation of servers and clients to different
computers

• The computer dedicated to the client must be suitable for
interaction with the user and support productivity tools
(electronic mail, word processing, spreadsheet, Internet access,
and workflow management)

• The server computer must have a large main memory (to
support buffer management) and a high capacity disk (for
storing the entire database)

8

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 18

Client: "thin" or "thick"?

• Thick client: includes application logic and leaves to the server
only the data management responsibility; the language of
communication is SQL

• Thin client: does as little as possible (essentially presentation);
used with dumb terminals, but also reasonable with PCs; the
application logic is on the server, and communication is
essentially procedure call

• Intermediate solutions:
– some logic on the server and some on the client (potentially

clumsy; reasonable only if there is a natural separation of
functions)

– three-tier solutions …

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 19

Two-tier vs three-tier architecture

• Two-tier architecture: client and server
• Three-tier architecture: a second server is present, known as

the application server, responsible for the management of the
application logic common to many clients
– The client is thin; it is responsible only for the interface with

the final user.
– Web applications almost always fall in this category
– Cooperative applications often even extend it

9

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 20

Distributed databases

• A distributed database is a system in which at least one client
interacts with multiple servers for the execution of an application

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 21

Advantages of distributed databases

• Distributed databases respond to application needs:
– Enterprises are structurally distributed, distributed data

management allows the distribution of data processing and
control to the environment where it is generated and largely
used

• Distributed databases offer greater flexibility, modularity and
resistance to failures
– Distributed systems can be configured by the progressive

addition and modification of components, with great flexibility
and modularity

– Although they are more vulnerable to failures due to their
structural complexity, they support ‘graceful degradation’
(respond to failures with a reduction in performance but
without a total failure)

10

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 22

Classification of applications

• Based on the type of DBMS involved:
– Homogeneous DDB: When all the servers have the same

DBMS
– Heterogeneous DDB: When the servers support different

DBMSs
• Based on the network:

– Can use a local area network (LAN)
– Can use a wide area network (WAN)

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 23

Classification of applications

Network typeType of DBMS

LAN WAN

Homogeneous Data management and
financial applications

Travel management and
financial applications

Heterogeneous Inter-divisional
information systems

Integrated banking and
inter-banking systems

11

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 25

Data fragmentation

• A technique for data organization that allows efficient data
distribution and processing

• Given a relation R. Its fragmentation a set of fragments Ri

– In horizontal fragmentation, fragments Ri are groups of
tuples having the same schema as R (selection operator).
Horizontal fragments are usually disjoint

– In vertical fragmentation, each fragment Ri has a subset of
the schema of R (projection). Vertical fragments include the
primary key of R

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 26

Fragmentation: properties

• The fragmentation is correct if it is:
– Complete: each data item of R must be present in one of its

fragments Ri

– Restorable: it should be possible to obtain back the content
of R from its fragments

• It could be useful that fragmentation is disjoint (or non-
redundant), but this need not be the case, for the sake of
efficiency (but with additional costs for maintenance)

12

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 27

Example

• Consider the relation:
– EMPLOYEE (Empnum, Name, DeptName, Salary, Taxes)

• Horizontal fragmentation
– EMPLOYEE1 = SELEmpnum<=3 EMPLOYEE
– EMPLOYEE2 = SELEmpnum>3 EMPLOYEE

• Reconstruction requires a union:
– EMPLOYEE = EMPLOYEE1 U EMPLOYEE2

• Vertical fragmentation:
– EMPLOYEE1 = PROJEmpNum,NameEMPLOYEE
– EMPLOYEE2 = PROJEmpNum,DeptName,Salary,TaxEMPLOYEE

• Reconstruction requires an equi-join on key values (natural join).
– EMPLOYEE = EMPLOYEE1 JOIN EMPLOYEE2

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 28

Initial table

EMPLOYEE EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

13

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 29

Example of horizontal fragmentation

EMPLOYEE1 EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1

EMPLOYEE2 EmpNum Name DeptName Salary Tax
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 30

Example of vertical fragmentation

EMPLOYEE1 EmpNum Name
1 Robert
2 Greg
3 Anne
4 Charles
5 Alfred
6 Paolo
7 George

EMPLOYEE2 EmpNum DeptName Salary Tax
1 Production 3.7 1.2
2 Administration 3.5 1.1
3 Production 5.3 2.1
4 Marketing 3.5 1.1
5 Administration 3.7 1.2
6 Planning 8.3 3.5
7 Marketing 4.2 1.4

14

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 31

Fragmentation and allocation schemas

• Each fragment Ri corresponds to a different physical file and is
allocated to a different server

• Thus, the relation is present in a virtual mode (like a view), while
the fragments are actually stored

• The allocation schema describes the mapping of relations or
fragments to the servers that store them. This mapping can be:
– non-redundant, when each fragment or relation is allocated

to a single server
– redundant, when at least one fragment or relation is

allocated to more than one server

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 32

Transparency levels

• There are three significant levels of transparency:
fragmentation, allocation and language transparency

• In absence of transparency, each DBMS accepts its own SQL
‘dialect’: the system is heterogeneous and the DBMSs do not
support a common interoperability standard

• Given:
– relation: SUPPLIER(SNum,Name,City)
– fragments: SUPPLIER1 = SELCity=‘London’ SUPPLIER

SUPPLIER2 = SELCity=‘Manchester’ SUPPLIER
• and the allocation schema:

– SUPPLIER1@company.London.uk
– SUPPLIER2@company.Manchester1.uk
– SUPPLIER2@company.Manchester2.uk

15

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 33

Language transparency

• On this level the programmer must indicate in the query both the
structure of the fragments and their allocation

• Queries expressed at a higher level of transparency are
transformed to this level by the distributed query optimizer,
aware of data fragmentation and allocation

• Query:
procedure Query3(:snum,:name);
select Name into :name

from Supplier1@company.London.uk
where SNum = :snum;

if :empty then
select Name into :name

from Supplier2@company.Manchester1.uk
where SNum = :snum;

end procedure;

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 34

Allocation transparency

• On this level, the programmer should know the structure of the
fragments, but does not have to indicate their allocation

• With replication, the programmer does not have to indicate
which copy is chosen for access (replication transparency)

• Query:
procedure Query2(:snum,:name);
select Name into :name

from Supplier1
where SNum = :snum;

if :empty then
select Name into :name
from Supplier2
where SNum = :snum;

end procedure;

16

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 35

Fragmentation transparency

• On this level, the programmer should not worry about whether or
not the database is distributed or fragmented

• Query:
procedure Query1(:snum,:name);
select Name into :name
from Supplier
where SNum = :snum;

end procedure

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 37

Classification of transactions

• Remote requests: read-only transactions made up of an arbitrary
number of SQL queries, addressed to a single remote DBMS
– The remote DBMS can only be queried

• Remote transactions made up of any number of SQL commands
(select, insert, delete, update) directed to a single remote DBMS
– Each transaction writes on one DBMS

• Distributed transactions made up of any number of SQL commands
(select, insert, delete, update) directed to an arbitrary number of
remote DBMSs, but each SQL command refers to a single DBMS
– Transactions may update more than one DBMS

• Requires distributed transaction management
• Distributed requests are arbitrary transactions, in which each SQL

command can refer to any DBMS
• Requires a distributed optimizer

17

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 39

Technology of distributed databases

• Data distribution does not influence consistency and durability
– Consistency of transactions does not depend on data

distribution, because integrity constraints describe only local
properties (a limit of the actual DBMS technology)

– Durability is not a problem that depends on the data
distribution, because each system guarantees local durability
by using local recovery mechanisms (logs, checkpoints, and
dumps)

• Other features and subsystems require major enhancements:
– Concurrency control (for isolation)
– Reliability control (for atomicity)
– Query optimization (for efficiency)

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 40

Distributed query optimization

• Required when a DBMS receives a distributed request; the
DBMS that is queried is responsible for the ‘global optimization’
– It decides on the breakdown of the query into many sub-

queries, each addressed to a specific DBMS
– It builds a strategy (plan) of distributed execution: consisting

of the coordinated execution of various programs on various
DBMSs and in the exchange of data among them

• The cost factors of a distributed query include the quantity of
data transmitted on the network
Ctotal = CI/O x nI/O + Ccpu x ncpu + Ctr x ntr

ntr: the quantity of data transmitted on the network
Ctr: unit cost of transmission

18

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 41

Concurrency control

• In a distributed system, a transaction ti can carry out various
sub-transactions tij , where the second subscript denotes the
node of the system on which the sub-transaction works.

t1 : r1A(x) w1A(x) r1B(y) w1B(y)
t2 : r2B(y) w2B(y) r2A(x) w2A(x)

• Local serializability within the schedulers is not a sufficient
guarantee of serializability.

• Consider the two schedules at nodes A and B:
SA : r1A(x) w1A(x) r2A(x) w2A(x)
SB : r2B(y) w2B(y) r1B(y) w1B(y)

• These are locally serializable, not globally:
– on node A, t1 precedes t2 and is in conflict with t2
– on node B, t2 precedes t1 and is in conflict with t1

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 42

Global serializability

• Global serializability of distributed transactions over the nodes of a
distributed database requires the existence of a unique serial
schedule S equivalent to all the local schedules Si produced at each
node

• The following properties are valid.
– If each scheduler of a distributed database uses the strict two-

phase locking method on each node (and so carries out the
commit action when all the sub-transactions have acquired all the
resources), then the resulting schedules are globally conflict-
serializable

– If each distributed transaction acquires a single timestamp and
uses it in all requests to all the schedulers that use concurrency
control based on timestamp, the resulting schedules are globally
serial, based on the order imposed by the timestamps

19

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 43

Lamport method for assigning timestamps

• The Lamport method for assigning timestamps reflects the
precedence among events in a distributed system

• A timestamp is a number characterized by two groups of digits
– The least significant digits identify the node at which the

event occurs
– The most significant digits identify the events that happen at

that node. They can be obtained from a local counter, which
is incremented at each event

• Each time two nodes exchange a message, the timestamps
become synchronized:
– The receiving event must have a timestamp greater than the

timestamp of the sending event
– This may require the increasing of the local counter on the

receiving node

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 44

Example of timestamp assignment with the
Lamport method

20

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 53

Failures in distributed systems

• A distributed system is subject to failures, message losses, or
network partitioning

• Node failures may occur on any node of the system and be soft
or hard, as discussed before

• Message losses leave the execution of a protocol in an
uncertain situation
– Each protocol message (msg) is followed by an

acknowledgement message (ack)
– The loss of either one leaves the sender uncertain about

whether the message has been received
• Network partitioning. This is a failure of the communication

links of the computer network which divides it into two sub-
networks that have no communication between each other
– A transaction can be simultaneously active in more than one

sub-network

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 54

Two-phase commit protocol

• Commit protocols allow a transaction to reach the correct commit or
abort decision at all the nodes that participate in a transaction

• The two-phase commit protocol is similar in essence to a marriage,
in that the decision of two parties is received and registered by a third
party, who ratifies the marriage
– The servers – who represent the participants to the marriage – are

called resource managers (RM)
– The celebrant (or coordinator) is allocated to a process, called the

transaction manager (TM)
• It takes place by means of a rapid exchange of messages between

TM and RM and writing of records into their logs. The TM can use:
– broadcast mechanisms (transmission of the same message to

many nodes, collecting responses arriving from various nodes)
– serial communication with each of the RMs in turn

21

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 55

New log records

• Records of TM
– The prepare record contains the identity of all the RM

processes (that is, their identifiers of nodes and processes)
– The global commit or global abort record describes

the global decision. When the TM writes in its log the
global commit or global abort record, it reaches the
final decision

– The complete record is written at the end of the two-phase
commit protocol

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 56

New log records

• Records of RM
– The ready record indicates the irrevocable availability to

participate in the two-phase commit protocol, thereby
contributing to a decision to commit. Can be written only
when the RM is “recoverable”, i.e., possesses locks on all
resources that need to be written. The identifier (process
identifier and node identifier) of the TM is also written on this
record

– In addition, begin, insert, delete, and update records
are written as in centralized servers

• At any time (before the ready) an RM can autonomously abort a
sub-transaction, by undoing the effects, without participating to
the two-phase commit protocol

22

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 57

First phase of the basic protocol

• The TM writes the prepare record in its log and sends a
prepare message to all the RMs. Sets a timeout indicating the
maximum time allocated to the completion of the first phase

• The recoverable RMs write on their own logs the ready record
and transmit to the TM a ready message, which indicates the
positive choice of commit participation

• The non-recoverable RMs send a not-ready message and
end the protocol

• The TM collects the reply messages from the RMs
– If it receives a positive message from all the RMs, it writes a
global commit record on its log

– If one or more negative messages are received or the time-
out expires without the TM receiving all the messages, it
writes a global abort record on its log

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 58

Second phase of the basic protocol

• The TM transmits its global decision to the RMs. It then sets a
second time-out

• The RMs that are ready receive the decision message, write the
commit or abort record on their own logs, and send an
acknowledgement to the TM. Then they implement the commit
or abort by writing the pages to the database as discussed
before

• The TM collects all the ack messages from the RMs involved in
the second phase. If the time-out expires it sets another time-out
and repeats the transmission to all the RMs from which it has
not received an ack

• When all the acks have arrived, the TM writes the complete
record on its log

23

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 59

The two-phase commit protocol

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 60

2PC dal punto di vista di una transazione

24

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 61

Blocking, uncertainty, recovery protocols

• An RM in a ready state loses its autonomy and awaits the
decision of the TM. A failure of the TM leaves the RM in an
uncertain state. The resources acquired by using locks are
blocked

• The interval between the writing on the RM’s log of the ready
record and the writing of the commit or abort record is called
the window of uncertainty. The protocol is designed to keep
this interval to a minimum

• Recovery protocols are performed by the TM or RM after
failures; they recover a final state which depends on the global
decision of the TM

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 62

Recovery of participants

• Performed by the warm restart protocol. Depends (for each
transaction) on the last record written in the log:
– when it is an action or abort record, the actions are

undone; when it is a commit, the actions are redone; in both
cases, the failure has occurred before starting the commit
protocol

– when the last record written in the log is a ready, the failure
has occurred during the two-phase commit. The participant
is in doubt about the result of the transaction

• During the warm restart protocol, the identifier of the
transactions in doubt are collected in the ready set. For each of
them the final transaction outcome must be requested to the TM

• This can happen as a result of a direct (remote recovery)
request from the RM or as a repetition of the second phase of
the protocol

25

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 63

Recovery of the coordinator

• (Again, for each transaction) When the last record in the log is a
prepare, the failure of the TM might have placed some RMs in
a blocked situation. Two recovery options:
– Write global abort on the log, and then carry out the

second phase of the protocol
– Repeat the first phase, trying to arrive to a global commit

• When the last record in the log is a global decision, some RMs
may have been correctly informed of the decision and others
may have been left in a blocked state. The TM must repeat the
second phase

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 64

Message loss and network partitioning

• The loss of a prepare or ready messages are not
distinguishable by the TM. In both cases, the time-out of the first
phase expires and a global abort decision is made

• The loss of a decision or ack message are also
indistinguishable. In both cases, the time-out of the second
phase expires and the second phase is repeated

• A network partitioning does not cause further problems, in that
the transaction will be successful only if the TM and all the RMs
belong to the same partition

26

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 65

Presumed abort protocol

• The presumed abort protocol is used by most DBMSs
• Based on the following rule:

– when a TM receives a remote recovery request from an in-
doubt RM and it does not know the outcome of that
transaction, the TM returns a global abort decision as default

• As a consequence, the force of prepare and global abort
records can be avoided, because in the case of loss of these
records the default behavior gives an identical recovery

• Furthermore, the complete record is not critical for the
algorithm, so it needs not be forced; in some systems, it is
omitted. In conclusion the records to be forced are ready,
global commit and commit

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 66

Read-only optimization

• When a participant is found to have carried out only read
operations (no write operations)

• It responds read-only to the prepare message and
suspends the execution of the protocol

• The coordinator ignores read-only participants in the second
phase of the protocol

27

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 67

Four-phase commit protocol

• Created by Tandem, a provider of hardware-software solutions
for data management based on the use of replicated resources
to obtain reliability

• The TM process is replicated by a backup process, located on a
different node. At each phase of the protocol, the TM first
informs the backup of its decisions and then communicates with
the RMs

• The backup can replace the TM in case of failure
• When a backup becomes TM, it first activates another backup,

to which it communicates the information about its state, and
then continues the execution of the transaction

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 69

Interoperability

• Interoperability is the main problem in the development of
heterogeneous applications for distributed databases

• It requires the availability of functions of adaptability and
conversion, which make it possible to exchange information
between systems, networks and applications, even when
heterogeneous

• Interoperability is made possible by means of standard protocols
such as FTP, SMTP/MIME, and so on

• With reference to databases, interoperability is guaranteed by
the adoption of suitable standards

28

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 70

Open Database Connectivity (ODBC)

• It is an application interface proposed by Microsoft in 1991 for
the construction of heterogeneous database applications,
supported by most relational products

• The language supported by ODBC is a restricted SQL,
characterized by a minimal set of instructions

• Applications interact with DBMS servers by means of a driver, a
library that is dynamically connected to the applications. The
driver masks the differences of interaction due to the DBMS, the
operating system and the network protocol
– For example, the trio (Sybase, Windows/NT, Novell)

identifies a specific driver
• ODBC does not support the two-phase commit protocol

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 71

ODBC Components

• The application issues SQL queries
• The driver manager loads the drivers at the request of the

application and provides naming conversion functions. This
software is supplied by Microsoft

• The drivers perform ODBC functions. They execute SQL
queries, possibly translating them to adapt to the syntax and
semantics of specific products

• The data source is the remote DBMS system, which carries out
the functions transmitted by the client

29

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 72

X-Open distributed transaction processing
(DTP)

• A protocol that guarantees the interoperability of transactional
computations on DBMSs of different suppliers

• Assumes the presence of one client, several RMs and one TM
• The protocol consists of two interfaces:

– Between client and TM, called TM-interface
– Between TM and each RM, called XA-interface

• Relational DBMSs must provide the XA-interface
• Various products specializing in transaction management, such

as Encina (a product of the Transarc company) and Tuxedo
(from Unix Systems, originally AT&T) provide the TM
component

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 73

Features of X-Open DTP

• RM are passive; they respond to remote procedure calls issued
by the TM

• The protocol uses the two-phase commit protocol with the
presumed abort and read-only optimizations

• The protocol supports heuristic decisions, which in the presence
of failures allow the evolution of a transaction under the control
of the operator
– When an RM is blocked because of the failure of the TM, an

operator can impose a heuristic decision (generally the
abort), thus allowing the release of the resources

– When heuristic decisions cause a loss of atomicity, the
protocol guarantees that the client processes are notified

– The resolution of inconsistencies due to erroneous heuristic
decisions is application-specific

30

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 74

TM interface

• tm_init and tm_exit initiate and terminate the client-TM
dialogue

• tm_open and tm_term open and close a session with the TM
• tm_begin begins a transaction
• tm_commit requests a global commit

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 75

XA Interface

• xa_open and xa_close open and close a session between
TM and a given RM

• xa_start and xa_end activate and complete a new
transaction

• xa_precom requests that the RM carry out the first phase of the
commit protocol; the RM process can respond positively to the
call only if it is in a recoverable state

• xa_commit and xa_abort communicate the global decision
about the transaction

• xa_recover initiates a recovery procedure after the failure of a
process (TM or RM); the RM consults its log and builds three
sets of transactions:
– Transactions in doubt
– Transactions decided by a heuristic commit
– Transactions decided by a heuristic abort

• xa_forget allows an RM to forget transactions decided in a
heuristic manner

31

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 76

Interazioni tra client, RM e TM
per il protocollo X-Open

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 77

Co-operation among pre-existing systems

• Co-operation is the capacity of the applications of a system to
make use of application services made available by other
systems, possibly managed by different organizations

• Needs for co-operation arise for different reasons, which range
from the simple demand for integration of components
developed separately within the same organization, to the co-
operation or fusion of different companies and organizations

• The integration of databases is quite difficult. Over-ambitious
integration and standardization objectives are destined to fail.
The ‘ideal’ model of a highly integrated database, which can be
queried transparently and efficiently, is impossible to develop
and manage

32

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 78

Iniziative di cooperazione - 1

• Le iniziative di cooperazione possono essere
occasione per razionalizzare i sistemi oggetto di
cooperazione, modificandone di conseguenza
eterogeenità, distribuzione, autonomia.

• Ciò richiede in generale una valutazione costi
benefici e una rimozione di vincoli normativi.

• Esempio:
– da 30 anni esistono in Italia due basi delle

automobili e dei proprietari di automobili, gestite
da Ministero dei Trasporti e Aci, tra loro non
coerenti.

– Recentemente e’ stata fatta (c’e’ voluta) una legge
per unificarle.

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 79

Iniziative di cooperazione - 2

• Esempio 2:
– Nel sistema Inps, Inail, Camere di Commercio, si

è colta l’occasione della creazione del record
indici, per effettuare record matching tra le tre basi
di dati, cioè riconciliazione tra record con errori
che rappresentano la stessa impresa, per
migliorare la qualità dei dati delle tre basi di dati

33

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 80

Data-centered co-operation

• Two kinds of co-operation:
– process-centered co-operation: the systems offer one

another services, by exchanging messages, information or
documents, or by triggering activities, without making remote
data explicitly visible

– data-centered co-operation, in which the data is naturally
distributed, heterogeneous and autonomous, and accessible
from remote locations according to some co-operation
agreement

• We will concentrate on data-centered co-operation,
characterized by data autonomy, heterogeneity and distribution

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 81

Features of data-centered co-operation

• The transparency level measures how the distribution and
heterogeneity of the data are masked

• The complexity of distributed operations measures the
degree of coordination necessary to carry out operations on the
co-operating databases

• The currency level indicates whether the data being accessed
is up-to-date or not

• Based on the above criteria, we can identify three architectures
for guaranteeing data-based co-operation

34

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 82

Multidatabases

• Each of the participating databases continues to be used by its
respective users (programs or end users)

• Systems are also accessed by modules, called mediators, which
show only the portion of database that must be exported. They
make it available to a global manager, which carries out the
integration

• In general, data cannot be modified by means of mediators,
because each source system is autonomous

• Features:
– presents an integrated view to the users, as if the database

were integrated
– provides a high level of transparency
– currency is also high, because data is accessed directly

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 83

Multidatabases

Mediatore

Gestore locale

Mediatore

Gestore locale

Mediatore

Gestore locale

Client

Gestore globale

DB DB DB

35

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 84

Systems based on replicated data

• They guarantee read only access to secondary copies of the
information provided externally

• These may be stored in the data warehouse, which contains
data extracted from various heterogeneous distributed systems
and offers a global view of data

• Features:
– present a high level of integration and transparency, but

have a reduced degree of currency

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 85

Systems based on replicated data

Mediatore

Gestore locale

Mediatore

Gestore locale

Mediatore

Gestore locale

Integratore

DB DB DB

Data Warehouse

Gestore DW

36

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 86

Systems based on external data access

• Data integration is carried out explicitly by the application
• In the next example, three sources are integrated: an external

database, a local database and a data warehouse, which in turn
uses three sources of information

• Features:
– Low degree of transparency and integration, with a degree of

currency that depends on specific demands

30/05/2005 P. Atzeni, S. Ceri Basi di dati distribuite 87

A system based on external data access

Mediatore

Gestore locale Gestore locale

Mediatore

Gestore locale

Mediatore

Gestore locale

Client

Integratore

DB DB DB DB

DW

Gestore DW

