Basi di dati II, primo modulo Esercizi di autovalutazione — 18 marzo 2011

Domanda 1 Alcuni DBMS prevedono la possibilità di includere in un indice i valori di altri attributi delle ennuple, oltre a quelli degli attributi su cui l'indice è realizzato. Ad esempio, una istruzione del tipo

CREATE INDEX contoCorrenteIX ON contoCorrente (numero) INCLUDE (saldo)

crea un indice sulla relazione contoCorrente includendo nelle foglie dell'indice, oltre ai valori di numero (su cui l'indice è realizzato), anche quelli di saldo. Confrontare (con riferimento ad esempio a specifiche operazioni di ricerca e di aggiornamento che potrebbero essere avvantaggiate o penalizzate) questa soluzione con le due seguenti

CREATE INDEX contoCorrenteIX ON contoCorrente (numero)
CREATE INDEX contoCorrenteIX ON contoCorrente (numero, saldo)

Domanda 2 Si considerino un sistema con blocchi di dimensione B = 1000 byte e puntatori ai blocchi di p = 5 byte e una base di dati sulle seguenti relazioni, ognuna delle quali (i) ha una struttura heap (ii) ha un indice secondario sulla chiave (iii) non ammette valori nulli

- $R_1(\underline{A}BC)$, contenente $S_1=1.000.000$ ennuple di $l_1=40$ byte, di cui $l_A=5$ per il campo chiave A
- $R_2(\underline{DEF})$, contenente $S_2=400.000$ ennuple di $l_2=100$ byte, di cui $l_D=4$ per il campo chiave D
- $R_3(\underline{G}HL)$, contenente $S_3 = 500.000$ ennuple di $l_3 = 25$ byte, di cui $l_G = 5$ per il campo chiave G e con una vista definita come segue:
 - CREATE VIEW V AS SELECT * FROM (R1 LEFT JOIN R2 ON B=D) JOIN R3 ON C=G

In tale contesto,

- mostrare un possibile piano di esecuzione (in termini di operatori dell'algebra relazionale e loro realizzazioni) per ciascuna delle seguenti interrogazioni
 - 1. SELECT A, L FROM V
 - 2. SELECT A FROM V
 - 3. SELECT A, E FROM V
- stimare il costo, in termini di numero di accessi a memoria secondaria (ignorando la presenza di eventuali buffer) per l'operazione 1.

Domanda 3 Siano r_1 ed r_2 due relazioni contenenti rispettivamente N_1 e N_2 ennuple, con fattore di blocco rispettivamente F_1 e F_2 . Si supponga che il sistema abbia a disposizione un buffer di dimensione pari a M=101 blocchi. Calcolare il numero di accessi a memoria secondaria necessario per eseguire un join $r_1 \bowtie_{A_1=A_2} r_2$ (con A_1 attributo di r_1 e A_2 attributo di r_2), nei seguenti casi, da considerare separatamente l'uno dall'altro e assumendo che il DBMS sia in grado di eseguire il join solo con il metodo nested-loop (eventualmente utilizzando l'accesso diretto tramite un indice invece della scansione interna) e che utilizzi solo strutture primarie disordinate. Si supponga infine che il blocco abbia dimensioni B=1 Kbyte, che i puntatori occupino p=4 byte e i valori dei due attributi in questione occupino k=20 byte ciascuno.

- 1. $N_1 = 100.000$ e $N_2 = 1.000.000$, con $F_1 = F_2 = 10$; A_2 è la chiave di r_2 mentre i valori di A_1 in r_1 si ripetono mediamente in e = 6 ennuple; non vi sono indici
- 2. $N_1=100.000$ e $N_2=1.000.000$, con $F_1=F_2=10$; A_1 è la chiave di r_1 mentre i valori di A_2 in r_2 si ripetono mediamente in e=6 ennuple; sono definiti un indice su $r_1(A_1)$ e uno su $r_2(A_2)$
- 3. $N_1 = 100.000$ e $N_2 = 1.000.000$, con $F_1 = F_2 = 10$; gli attributi coinvolti non sono chiave e hanno, ciascuno, valori che si ripetono mediamente in e = 6 ennuple; è definito un indice su $r_1(A_1)$
- 4. $N_1=5.000$ e $N_2=1.000.000$, con $F_1=F_2=20$; A_1 è la chiave di r_1 e A_2 è la chiave di r_2 ; sono definiti un indice su $r_1(A_1)$ e uno su $r_2(A_2)$

Domanda 4 Sperimentare le strutture fisiche di un DBMS, definendo alcune relazioni (ad esempio tre) e alcune interrogazioni (due o tre) che prevedano selezioni, proiezioni e join. Utilizzare relazioni di dimensioni sufficientemente grandi da rendere conveniente l'uso degli indici (si suggerisce di generare, con opportuni progammi, dati sintetici casuali). Mostrare, con riferimento al DBMS scelto (DB2, PostgresSQL, Oracle, etc.) il comportamento del sistema (in termini di piano di esecuzione delle interrogazioni), in presenza e assenza di indici e prima e dopo l'aggiornamento delle statistiche.