
1

Runtime Schema And Data Translation

Giorgio Gianforme, PhD

Università Roma Tre

Model Management

Highlights

�New approach to metadata management

�Models and mappings are abstractions

� They can be manipulated by model-at-a-time and 

mapping-at-a-time operators

�Generic approach

� Operators can be applied to any model and mapping

� Single implementation of operators

ModelGen

Why?

� Humans need models to represent every kind of knowledge 

� To share knowledge humans have to unify models

What?

� Given two data models M1 and  M2 and a schema S1 of M1

(source schema and model), we generate a schema S2 of M2

(the target schema and model), corresponding to S1 and, 

for each database D1 over S1, 
we generate an equivalent database D2 over S2

How?

� We use a framework that allows the definition of any possible 

model and the definition of translations from a model to 

another

Scenario

Example

�Given an Object-Oriented schema, 

we generate a corresponding Relational schema

Scenario

Example

�Given an XML file, conform to an XSD file,

we generate a corresponding 

Object-Relational schema

<?xml … >
< … >
<tag1>
<tag2> value2 </tag2>
<tag3>
<tag4> value4 </tag4>
<tag5> value5 </tag5>

</tag3>
…

</tag1>
</…>

Uniform Representation

Model

�Abstract representation of the domain

Construct

�A construct represents a concept of the domain

MetaModel

�Description of a model in terms of: 
� Constructs constituting it

� Constraints on constructs

� Relationships between constructs



2

Uniform and Generic Representation

SuperModel

�Constructs in the various models are rather similar 

and can be classified into a few categories

�Reduced set of constructs

�Supermodel is a model that includes all constructs

Translation 

�Can be defined on constructs

�Elementary translations to be combined

Uniform and Generic Representation

SuperModel

Translation

Example

�Object-Oriented to Relational

� Eliminate generalization

� Transform classes to tables, fields to columns, and 

references to foreign keys

Space of Models

Which Direction?

S

T

Space of Models

Which Direction?

S

T

Details

Our Constructs

�Oid, name, boolean properties and references

Our Translation Rules

�Datalog with oid invention (Skolem functors)

� Names of predicates are names of constructs

� Names of arguments may be OIDs, names,

names of references and properties

Remarks

�References between constructs are mandatory

�Oids are necessary “only” for technical reasons

�Constraints on boolean properties are well 

represented by propositional formula



3

Constructs

Simple Entity Relationship

�One construct for entities

� No properties and no references

�One construct for attributes of entities

� Properties: is identifier, is nullable

� A reference towards the corresponding entity

�One construct for binary relationships

� Properties for minimum and maximum cardinalities

� Two references towards the involved entities

Datalog

Examples

�Whenever B, produce H

� H ← B

�Generate a new Aggregation for each Abstract

� Aggregation ( 

OID: SK1(oid),

Name: name )

←
Abstract ( 

OID: oid,

Name: name );

Datalog

Examples

�Generate a new Lexical of Aggregation for each 

Lexical of Abstract

� Lexical ( 

OID: SK2(oid),

Name: name, isIdentifier: isId, …,

AggregationOID: SK1(absOid) )

←
Lexical ( 

OID: oid,

Name: name, isIdentifier: isId, …,

AbstractOID: absOID ),

Abstract ( 

OID: absOID );

Reasoning

Idea

�To make system able to reason on models 

automatically, we can use a compact representation 

of models and rules

Models

�Set of constructs with an associated formula

� ER with no null values and no attributes on relationships:

ER* = { Entity (true), Relationship (true), 
attributeOfEntity (NOT isNullable),

attributeOfRelationship (false) }

Reasoning

Rules

�Signature of rule to describe:

� Applicability

� Result of application

� Mapping between input and output

A ( OID: …
a1: true,
a2: x )

←

B ( OID: …
b1: true,
cOID: y ),

C ( OID: y, 
c1: false,
c2: x );

Reasoning

Rules

�Signature of rule to describe:

� Applicability

� Result of application

� Mapping between input and output

A ( OID: …
a1: true,
a2: x )

←

B ( OID: …
b1: true,
cOID: y ),

C ( OID: y, 
c1: false,
c2: x );



4

Reasoning

Rules

�Signature of rule to describe:

� Applicability

� Result of application

� Mapping between input and output

A ( OID: …
a1: true,
a2: x )

←

B ( OID: …
b1: true,
cOID: y ),

C ( OID: y, 
c1: false,
c2: x );

Reasoning

Rules

�Signature of rule to describe:

� Applicability

� Result of application

� Mapping between input and output

A ( OID: …
a1: true,
a2: x )

←

B ( OID: …
b1: true,
cOID: y ),

C ( OID: y, 
c1: false,
c2: x );

Space of Models

Which Direction?

S

T

Reasoning

Formal System

�Compact representation of models and rules

� Based on logical formulas

�Reasoning on data models

� Union, intersection, difference of models and schemas

� Applicability and application of rules and programs

�Sound and complete 

with respect to the Datalog programs

� The application of a program to a schema can generate 

all (completeness) and only (soundness) constructs 

belonging to the application of the signature of that 

program to the model of that schema

Reasoning

Main Application

� It is possible to find automatically a sequence of 

basic translations to perform the transformation of a 

schema from a model to another, under suitable 

assumptions

Observations

�Few “family” of models

� ER, OO, Relational…

� Each family has a progenitor

�Two kind of Datalog programs

� Reduction

� Transformation

Reasoning

Observations

�Few “family” of models



5

Reasoning

Observations

�Two kind of Datalog programs

� Reduction

� Transformation

S T

TS

Reasoning

Automatic Translation

�3-steps transformation

� Reduction within the source family

� Transformation from the source family to the target family

� Reduction within the target family

M∗
1 M∗

2

M1 M'1 M'2 M2

T

FFFF1111 FFFF2222

Supermodel & Rules

Enhanced Supermodel

�The usefulness of the MIDST proposal depends on the 

expressive power of its supermodel

� The set of (families of) models handled 

� Accuracy and precision of the representation of such models

� Improvement of the expressive power of the 

supermodel has been performed by introducing new 

constructs

�New constructs imply definition of new rules

b. Translation

Transformation

In Theory

Translation:

composition 

of a, b and c

Supermodel

Source model Target model

a. Copy c. Copy

Exercise

Who is Missing?

� Instances

�The tool automatically generate instance level rules,

from schema level rules

� …but fails in some cases b. Translation

Transformation

In Practice

Translation:

composition 

of a, b and c

Supermodel

IBM DB2

Micrososft SQLServer

Oracle
Source System

IBM DB2

Micrososft SQLServer

Oracle
Target System

a. Import c. Export



6

MIDST tool

Guided Tour

MIDST tool

Where is the Problem?

� Off-line translation

� The source DB is imported, translated, and exported

� This is not always feasible

MIDST tool

Where is the Problem?

� Off-line translation

� The source DB is imported, translated, and exported

� This is not always feasible

Idea

� Data not moved from the source system

� Translations performed directly on it

On-line Operator

2-steps Algorithm

� Generate views according to the constructs

� Specialize them according to the operational 

system

Motivating Examples

Data Migration

�Data migration is the process of transferring data 

between storage types, formats, or computer 

systems

�The need to migrate data can be driven by multiple 

business requirements 

� Storage migration

� Database migration

� Application migration

� …

Motivating Examples

Data Migration

�Using MIDST

� Define a virtual schema over the source system, 

that is also compatible with the target system

� Define on the target system this virtual schema

� Prepare the migration, updating the applications

� Produce a set of statements that populate tables of the 

target system with data extracted from (the views over) the 

source schema 



7

Motivating Examples

Data Migration via XML

�XML was thought for the Web, but is largely used for 

exchanging data

�Using MIDST, it is possible to migrate data via XML

� Generate statements that create an XML representation of 

the original data

� Import this XML document in the new system

Motivating Examples

Object/Relational Mapping

�How can “communicate” objects and relations?

�Two directions

� From a relational schema to object-oriented wrappers

� From a set of software objects to a relational schema 

definition

�Using MIDST

� Different object-relational technologies

� Customizable mapping

Motivating Examples

Updating Relational Views

�Views can be used to expose different schemas over 

the same data to different users/applications

� In general they are not updatable

�Using MIDST

� Define views

� Introducing “reverse mappings”, MIDST knows the origin of 

data and can forward updates to original data

Running Example

Source Schema

�An object relational schema

LastName

Office

EMPLOYEE

School

ENGINEER

Specialization

IT_ENGINEER

Name

Address

DEPARTMENT

Running Example

Target Model

�Relational model

� DEPARTMENT (DEPARTMENT_OID, Name, Address)

� EMPLOYEE (EMP_OID, LastName, DEPARTMENT_OID_fk)

� ENGINEER (ENG_OID, School, EMP_OID_fk)

� IT_ENGINEER (IT_ENG_OID, Specialization, ENG_OID_fk)

Running Example

Translation

�A schema-level translation should perform three 

tasks

� Elimination of the multiple levels of generalizations 

� Replacement of references with foreign keys

� Transformation of the typed tables into value-based ones



8

Running Example

Runtime Translation in MIDST

�At each step, the tool produces a set of views

� CREATE VIEW ENG_A … AS

( SELECT … SCHOOL, … EMP_OID

FROM ENG

);

Generating Views

General Approach

�Analysis of Datalog schema rules

�Production of system generic statements

�Coding of statements in SQL-like language

�Specialization of encoded statements

Generating Views

View

�CREATE VIEW … AS

SELECT …

FROM …

�How to fill blank spaces?

Generating Views

Classification of Constructs

�Container constructs

� Sets or structured objects in the operational system

�Content constructs 

� Elements of more complex constructs

�Support constructs

� Elements that model relationships and constraints between 

constructs, without storing data 

Content

Container

Support

Generating Views

Classification of Rules

�Container generating rules

�Content generating rules

�Support generating rules

Generating Views

Idea

�Define a view for each container

�Fields of a view derive from contents related with 

the corresponding container

�Support constructs do not affect view definitions



9

Generating Views

Example

�H ← B

� If H is a container, create a view for each instantiation of B

� If H is a content, add a field to a certain view

Generating Views

Running Example

�Elimination of generalizations

� Container generating rule:

copy abstracts

� Content generating rules:

copy lexicals;

copy abstract attribute;

replace generalizations

with references

LastName

Office

EMPLOYEE

School

ENGINEER

Specialization

IT_ENGINEER

Name

Address

DEPARTMENT

Generating Views

Problem

�Provenance of data

� Where to derive values from?

� How to generate new values?

Generating Views

Solution

�Provenance of data is encoded in Skolem functors

� H ( OID: SK(…), … ) ← …

� If SK has an oid of a content as a parameter, then the value 

for H comes from the instance of construct having that oid

� Lexical ( 

OID: SK2(oid),

… )

←
Lexical ( 

OID: oid,

…),

Abstract ( … );

Generating Views

Solution

�Provenance of data is encoded in Skolem functors

� H ( OID: SK(…), … ) ← …

� If SK has no parameter referring to a content, then we add 

an annotation to the corresponding rule

� AbstractAttribute ( 

OID: SK2 (genOID),

… )

←
Generalization ( 

OID: genOID,

… ),

… ;

� In this case we can use the internal tuple OID

Generating Views

Running Example

� CREATE VIEW ENG_A AS 

( SELECT SCHOOL, REF(ENG_OID) AS EMP_OID

FROM ENG

); 



10

View Generation Algorithm

Input

�A schema level translation

�A classification of the constructs

Output

�SQL statements defining views

View Generation Algorithm

Definitions

�Containers(T)

� The set of containers-generating rules of a translation T 

�Contents(T)

� The set of content-generating rules of a translation T

�Content(R,T)

� The set of rules (of a translation T) generating contents for 

a container generated by R ( R∈Containers(T)) 

�Abstract view

� A pair (R, content(R,T), with R∈Containers(T)

View Generation Algorithm

Running Example

�Elimination of generalizations (T)

� Containers(T):

copy abstracts

� Contents(T):

copy lexicals;

copy abstract attribute;

replace generalizations

with references

LastName

Office

EMPLOYEE

School

ENGINEER

Specialization

IT_ENGINEER

Name

Address

DEPARTMENT

View Generation Algorithm

And Now?

� Instantiate abstract view

�Translate each instantiated abstract view into a 

view generating statement

�Specialize view generating statements according to a 

specific system’s syntax

View Generation Algorithm

Running Example

�Elimination of generalizations

� V1 = ( EMP →copy-abstract EMP ,

{ EMP(lastname) →copy-lexical EMP(lastname),

EMP(office) →copy-AbstractAttribute EMP(office) })

LastName

Office

EMPLOYEE

Name

Address

DEPARTMENT

View Generation Algorithm

Running Example

�Elimination of generalizations

� V2 = ( DEPT →copy-abstract DEPT,

{ DEPT (name) →copy-lexical DEPT (name),

DEPT (address) →copy-lexical DEPT (address) })

Name

Address

DEPARTMENT



11

View Generation Algorithm

Running Example

�Elimination of generalizations

� V3 = ( ENG →copy-abstract ENG ,

{ ENG(school) →copy-lexical ENG(school),

Gen(EMP;ENG) →elim-gen ENG(EMP)})

LastName

Office

EMPLOYEE

School

ENGINEER

View Generation Algorithm

Running Example

�Elimination of generalizations

� V4 = ( IT_ENG →copy-abstract IT_ENG,

{ IT_ENG (specialization) →copy-lexical

IT_ENG (specialization),

Gen(ENG; IT_ENG) →elim-gen IT_ENG(ENG)})

School

ENGINEER

Specialization

IT_ENGINEER

View Generation Algorithm

Running Example

�Elimination of generalizations

� CREATE TYPE OR_DEMO_1.DEPARTMENT_t AS (

NAME varchar(50),

ADDRESS varchar(50))

NOT FINAL MODE DB2SQL WITH FUNCTION ACCESS REF 

USING INTEGER;

� CREATE VIEW OR_DEMO_1.DEPARTMENT of 

OR_DEMO_1.DEPARTMENT_t MODE DB2SQL (REF is 

OIDDEPARTMENT USER GENERATED) AS

SELECT CAST(CAST(OR_DEMO.DEPARTMENT.OIDDEPT AS

INTEGER) AS REF(OR_DEMO_1.DEPARTMENT_t)),

OR_DEMO.DEPARTMENT.NAME,

OR_DEMO.DEPARTMENT.ADDRESS

FROM    OR_DEMO.DEPARTMENT;

View Generation Algorithm

Running Example

�Elimination of generalizations


