Runtime Schema And Data Translation

Giorgio Gianforme, PhD

Universita Roma Tre

Model Management

Highlights
v'New approach to metadata management

v Models and mappings are abstractions
= They can be manipulated by model-at-a-time and
mapping-at-a-time operators
v Generic approach
= Operators can be applied to any model and mapping
= Single implementation of operators

ModelGen

Why?
v Humans need models to represent every kind of knowledge
v To share knowledge humans have to unify models
What?
v Given two data models M; and M, and a schema S, of M,
(source schema and model), we generate a schema S, of M,
(the target schema and model), corresponding to S, and,
for each database D, over S,
we generate an equivalent database D, over S,
How?
v We use a framework that allows the definition of any possible
model and the definition of translations from a model to
another

Scenario

Example

v Given an Object-Oriented schema,
we generate a corresponding Relational schema

Scenario

Example
v Given an XML file, conform to an XSD file,
we generate a corresponding
Object-Relational schema

<xml ... >
<..>
<tagl>
<tag2> value2 </tag2>

<tag3>
<tag4> value4 </tag4 D l
<tag5> value5 </tag5
</tag3>

</tagl>
</.>

Uniform Representation

Model
v Abstract representation of the domain
Construct
v' A construct represents a concept of the domain
MetaModel
v'Description of a model in terms of:
= Constructs constituting it
= Constraints on constructs
= Relationships between constructs

Uniform and Generic Representation

SuperModel

v'Constructs in the various models are rather similar

and can be classified into a few categories
v'Reduced set of constructs

v'Supermodel is a model that includes all constructs

Translation
v Can be defined on constructs
v Elementary translations to be combined

Uniform and Generic Representation

SuperModel

Translation

Example
v Object-Oriented to Relational
= Eliminate generalization

= Transform classes to tables, fields to columns, and
references to foreign keys

— N

Space of Models

Which Direction?

Space of Models

Which Direction?

Details

Our Constructs

v 0id, name, boolean properties and references
Our Translation Rules

v Datalog with oid invention (Skolem functors)

= Names of predicates are names of constructs

= Names of arguments may be OIDs, names,
names of references and properties

Remarks
v'References between constructs are mandatory
v 0ids are necessary “only” for technical reasons

v Constraints on boolean properties are well
represented by propositional formula

Constructs

Simple Entity Relationship
v"One construct for entities
= No properties and no references
v'One construct for attributes of entities
= Properties: is identifier, is nullable
= A reference towards the corresponding entity
v'One construct for binary relationships
= Properties for minimum and maximum cardinalities
= Two references towards the involved entities

Datalog
Examples
v"Whenever B, produce H
“H.B

v'Generate a new Aggregation for each Abstract
= Aggregation (
0ID: SK1(oid),
Name: name)

Abstract (
0ID: oid,
Name: name);

Datalog

Examples

v Generate a new Lexical of Aggregation for each
Lexical of Abstract
= Lexical (
0ID: SK2(oid),
Name: name, isldentifier: isld, ...,
AggregationOID: SK1(absOid))

Lexical (
0ID: oid,
Name: name, isldentifier: isld, ...,
AbstractOID: absOID),

Reasoning

Idea
v To make system able to reason on models
automatically, we can use a compact representation
of models and rules
Models
v'Set of constructs with an associated formula

= ER with no null values and no attributes on relationships:
ER* = { Entity (true), Relationship (true),
attributeOfEntity (NOT isNullable),
attributeOfRelationship (false) }

Abstract (
OID: absOID);
Reasoning Reasoning
Rules A (OID: Rules A (OID:
v Signature of rule to describe: a: true, v Signature of rule to describe: a: true,
= Applicability 31 X) = Applicability 3, X)
= Result of application - = Result of application -
. . B(OID: ...) . B(OID: ...
= Mapping between input and output b true = Mapping between input and output b true
. true, . true,
cOID:y), cOID:y),
C(OID:y, C(OID:y,
c,: false, c,: false,
CyiX); G, X);

Reasoning

R
ules) . A(OID: ...
v Signature of rule to describe: a: true,
= Applicability a,: X)
= Result of application -

. . B (OID: ...
Mapping between input and output by: true,

cOID:y),
C(OID:y,

c,: false,

C,i X);

Reasoning

Rules A(OID:
v Signature of rule to describe: a: true,
= Applicability 2, X)
= Result of application -

. . B (OID: ...
Mapping between input and output by: true,

cOID:y),
C(OID:y,

c,: false,

G, X);

Space of Models

Which Direction?

Reasoning

Formal System
v Compact representation of models and rules
= Based on logical formulas
v"Reasoning on data models
= Union, intersection, difference of models and schemas
= Applicability and application of rules and programs
v'Sound and complete
with respect to the Datalog programs

= The application of a program to a schema can generate
all (completeness) and only (soundness) constructs
belonging to the application of the signature of that
program to the model of that schema

Reasoning

Main Application
v'It is possible to find automatically a sequence of
basic translations to perform the transformation of a
schema from a model to another, under suitable
assumptions
Observations
v Few “family” of models
= ER, 00, Relational...
= Each family has a progenitor
v Two kind of Datalog programs
= Reduction
= Transformation

Reasoning

Observations
v Few “family” of models

. Entity
" _Relationship
Object
Oriented
Object
Relational

Reasoning

Observations

v Two kind of Datalog programs
= Reduction

2 ED)
= Transformation
ONIGD

Reasoning

Automatic Translation
v 3-steps transformation
= Reduction within the source family

= Transformation from the source family to the target family
= Reduction within the target family

g, m n, 8,
M/ \M - ! / \M

_____ FM

Supermodel & Rules

Enhanced Supermodel
v The usefulness of the MIDST proposal depends on the
expressive power of its supermodel
= The set of (families of) models handled
= Accuracy and precision of the representation of such models
v Improvement of the expressive power of the
supermodel has been performed by introducing new
constructs

v'New constructs imply definition of new rules

Transformation
In Theory
Supermodel
I
a. Copy| c. Copy
t Translation:
composition
4 K E| sasmie -
Source model Target model

Exercise

Who is Missing?
v Instances

v'The tool automatically generate instance level rules,
from schema level rules

= ...but fails in some cases

Transformation
In Practice
Supermodel
I
a. Import| c. Export
t Translation:
IBM DB2 g‘f’r“;pgs:r:gnc IBM DB2
Micrososft SQLServer — " .| Micrososft SQLServer
Oracle Oracle
Source System Target System

MIDST tool

MIDST tool

Guided Tour

MIDST ()

Model Independent
Schema and Data
Translation

Where is the Problem?

v Off-line translation
= The source DB is imported, translated, and exported

v' This is not always feasible

MIDST tool

On-line Operator

Where is the Problem?

v Off-line translation
= The source DB is imported, translated, and exported

v' This is not always feasible

Idea
v Data not moved from the source system
v Translations performed directly on it

2-steps Algorithm
v Generate views according to the constructs
v" Specialize them according to the operational
system

Access Access
via Source via Target
Schema S, Schema S,

l Translator
| [view
—

Generator
Operational System MiDST

Importer

Motivating Examples

Data Migration
v'Data migration is the process of transferring data
between storage types, formats, or computer
systems
v The need to migrate data can be driven by multiple
business requirements
= Storage migration
= Database migration
= Application migration

Motivating Examples

Data Migration
v'Using MIDST

= Define a virtual schema over the source system,
that is also compatible with the target system

= Define on the target system this virtual schema

= Prepare the migration, updating the applications

= Produce a set of statements that populate tables of the
target system with data extracted from (the views over) the
source schema

Motivating Examples

Motivating Examples

Data Migration via XML
v XML was thought for the Web, but is largely used for
exchanging data
v"Using MIDST, it is possible to migrate data via XML

= Generate statements that create an XML representation of
the original data
= Import this XML document in the new system

Object/Relational Mapping
v"How can “communicate” objects and relations?
v Two directions
= From a relational schema to object-oriented wrappers
= From a set of software objects to a relational schema
definition
v"Using MIDST
= Different object-relational technologies
= Customizable mapping

Motivating Examples

Running Example

Updating Relational Views
v'Views can be used to expose different schemas over
the same data to different users/applications
v'In general they are not updatable
v"Using MIDST
= Define views

= Introducing “reverse mappings”, MIDST knows the origin of
data and can forward updates to original data

Source Schema
v An object relational schema

EMPLOYEE DEPARTMENT

LastName Name
Office Address

Zas

ENGINEER
School

Zas

IT_ENGINEER
Specialization

Running Example

Running Example

Target Model

v'Relational model
= DEPARTMENT (DEPARTMENT_OID, Name, Address)
= EMPLOYEE (EMP_OID, LastName, DEPARTMENT_OID_fk)
= ENGINEER (ENG_OID, School, EMP_OID_fk)
= IT_ENGINEER (IT_ENG_OID, Specialization, ENG_OID_fk)

Translation
v" A schema-level translation should perform three
tasks
= Elimination of the multiple levels of generalizations
= Replacement of references with foreign keys
= Transformation of the typed tables into value-based ones

Running Example

Runtime Translation in MIDST

v' At each step, the tool produces a set of views
= CREATE VIEW ENG_A ... AS
(SELECT ... SCHOOL, ... EMP_OID
FROM ENG
);

Generating Views

General Approach

v" Analysis of Datalog schema rules
v'Production of system generic statements
v'Coding of statements in SQL-like language
v'Specialization of encoded statements

Generating Views

View
v CREATE VIEW ... AS
SELECT ...
FROM ...

v"How to fill blank spaces?

Generating Views

Classification of Constructs

v'Container constructs

= Sets or structured objects in the operational system
v"Content constructs

= Elements of more complex constructs
v/ Support constructs

= Elements that model relationships and constraints between
constructs, without storing data

&

Generating Views

Classification of Rules
v'Container generating rules
v Content generating rules
v'Support generating rules

Generating Views

Idea

v Define a view for each container

v Fields of a view derive from contents related with
the corresponding container

v/ Support constructs do not affect view definitions

Generating Views

Generating Views

Example
vH - B
= If H is a container, create a view for each instantiation of B
= If H is a content, add a field to a certain view

Running Example

v Elimination of generalizations

= Container generating rule:
copy abstracts

= Content generating rules:

copy lexicals;
copy abstract attribute; EMPLOYEE DEPARTMENT

replace generalizations LastName Name
with references Office Address

7%

ENGINEER
School

ZaS

IT_ENGINEER
Specialization

Generating Views

Generating Views

Problem
v Provenance of data
= Where to derive values from?
= How to generate new values?

Solution
v Provenance of data is encoded in Skolem functors
= H (OID: SK(...), o) < ...
= If SK has an oid of a content as a parameter, then the value
for H comes from the instance of construct having that oid

= Lexical (
OID: SK2(oid),
)

Lexical (
OID: oid,

),
Abstract (...);

Generating Views

Generating Views

Solution

v Provenance of data is encoded in Skolem functors
= H (OID: SK(...), o) < ...
= If SK has no parameter referring to a content, then we add
an annotation to the corresponding rule
= AbstractAttribute (
0ID: SK2 (genOID),
)

Generalization (
OID: genOID,
)

s
= In this case we can use the internal tuple OID

Running Example
= CREATE VIEW ENG_A AS
(SELECT SCHOOL, REF(ENG_OID) AS EMP_OID
FROM ENG
);

View Generation Algorithm

Input

v' A schema level translation

v' A classification of the constructs
Output

v'SQL statements defining views

View Generation Algorithm

Definitions
v Containers(T)
= The set of containers-generating rules of a translation T
v Contents(T)
= The set of content-generating rules of a translation T
v Content(R,T)

= The set of rules (of a translation T) generating contents for
a container generated by R (ROContainers(T))

v Abstract view
= A pair (R, content(R,T), with ROContainers(T)

View Generation Algorithm

Running Example

v Elimination of generalizations (T)
= Containers(T):
copy abstracts
= Contents(T):

View Generation Algorithm

copy lexicals;
copy abstract attribute; EMPLOYEE DEPARTMENT

replace generalizations LastName Name
with references Office Address

7%

ENGINEER
School

IT_ENGINEER
Specialization

And Now?
v Instantiate abstract view
v Translate each instantiated abstract view into a
view generating statement
v Specialize view generating statements according to a
specific system’s syntax

View Generation Algorithm

Running Example
v Elimination of generalizations

- V1 = (EMP — copy-abstract EMP ,
{ EMP(lastname) - .yp,.exicat EMP(lastname),
EMP(0ffice) — copy.apstracarrvuee EMP(Office))

EMPLOYEE DEPARTMENT
LastName Name
Office Address

View Generation Algorithm

Running Example

v Elimination of generalizations
= V,= (DEPT — copy-abstract DEPT,
{ DEPT (name) - cypy.exicat DEPT (name),
DEPT (address) — copy.iexical DEPT (address) })

DEPARTMENT

Name
Address

10

View Generation Algorithm

View Generation Algorithm

Running Example
v Elimination of generalizations

= Vy= (ENG — copy-abstract ENG,
{ ENG(school) - py.iexical ENG(school),
Gen(EMP;ENG) - gjim.gen ENG(EMP)})

EMPLOYEE

LastName
Office

Fas

ENGINEER
School

Running Example
v Elimination of generalizations
= Vo= (IT_ENG — oy apstrace IT_ENG,
{ IT_ENG (specialization) - cop,.iexical
IT_ENG (specialization),
Gen(ENG; IT_ENG) — gy gen IT_ENG(ENG)3)

ENGINEER
School

Pas

IT_ENGINEER
Specialization

View Generation Algorithm

View Generation Algorithm

Running Example
v Elimination of generalizations
= CREATE TYPE OR_DEMO_1.DEPARTMENT_t AS (
NAME varchar(50),
ADDRESS varchar(50))
NOT FINAL MODE DB2SQL WITH FUNCTION ACCESS REF
USING INTEGER;
= CREATE VIEW OR_DEMO_1.DEPARTMENT of
OR_DEMO_1.DEPARTMENT_t MODE DB2SQL (REF is
OIDDEPARTMENT USER GENERATED) AS
SELECT CAST(CAST(OR_DEMO.DEPARTMENT.OIDDEPT AS
INTEGER) AS REF(OR_DEMO_1.DEPARTMENT_t)),
OR_DEMO.DEPARTMENT.NAME,
OR_DEMO.DEPARTMENT.ADDRESS
FROM OR_DEMO.DEPARTMENT;

Running Example
v Eliminati

f generalizations

11

