SOS (Save Our Systems): A uniform programming
interface for non-relational systems

Paolo Atzeni
Universita Roma Tre
atzeni@dia.uniroma3.it

ABSTRACT

The recent growth of non-relational databases (often termed
as NoSQL) is an interesting phenomenon that has generated
both interest and criticism. One of the major drawbacks
that is often referred to is the heterogeneity of the languages
and interfaces they offer to developers and users.

SOS is proposed as a common interface to them, in order
to support application development by hiding the specific
details of the various systems. It is based on a metamod-
eling approach, in the sense that the specific interfaces of
the various systems are mapped to a common one. The tool
provides interoperability as well, since a single application
can interact with several systems at the same time. The
demonstration will focus on a simple yet powerful applica-
tion scenario which accesses three different NoSQL systems.

Categories and Subject Descriptors

H.2.5 [Heterogeneous databases|: Data translation, Pro-
gram translation

Keywords

Metamodeling, Nonrelational databases

1. INTRODUCTION

Relational data base systems (RDBMSs), as developed
over the last thirty or even forty years, dominate the mar-
ket by providing an integrated set of services that refer to
a variety of requirements, which include support for both
traditional transaction processing and decision support, as
well as to complex operations of various kinds. All the
major RDBMSs on the market show a similar architecture
(based on the first systems developed in the Seventies) and
do support SQL as a standard language (even if with dialects
that differ somehow). They do provide reasonably general-
purpose solutions that balance in an often satisfactory way
the various requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT 2012, March 26-30, 2012, Berlin, Germany.

Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00

Francesca Bugiotti
Universita Roma Tre
franbugiotti@yahoo.it

Luca Rossi
Universita Roma Tre
luca.rossi.917@gmail.com

However, some concerns have recently emerged towards
RDBMSs. First, it has been argued that there are cases
where their performances are not adequate, while dedicated
engines, tailored for specific requirements behave much bet-
ter [12] and provide scalability [11]. Second, the structure
of the relational model, while being effective for many tra-
ditional applications, is considered to be too rigid in other
cases, with arguments that call for semistructured data (as it
was discussed since the first Web applications and the devel-
opment of XML [1]). At the same time, the full power of re-
lational databases, with complex transactions and complex
queries, is not needed in some contexts, where “simple oper-
ations” (reads and writes that involve small amount of data)
are enough [11]. Also, in some cases ACID consistency, the
complete form of consistency guaranteed by RDBMSs, is not
essential, and can be sacrificed for the sake of efficiency. It
is worth observing that many Internet application domains,
for example, that of social networking, require both scalabil-
ity (indeed, Web-size scalability) and flexibility in structure,
while being satisfied with simple operations and weak forms
of consistency.

With these motivations, a number of new systems, not fol-
lowing the RDBMS paradigm (neither in the interface nor in
the implementation), have recently been developed. Their
common features are scalability and support for simple oper-
ations only (and so, limited support for complex ones), with
some flexibility in the structure of data. Most of them also
relax consistency requirements. They are often indicated as
NoSQL systems, because they can be accessed by APIs that
offer much simpler operations than those that can be ex-
pressed in SQL. Probably, it would be more appropriate to
call them non-relational, but we will stick to common usage
and adopt the term NoSQL.

There is a variety of systems in the NoSQL arena. An in-
teresting classification has been proposed, based on the mod-
eling constructs available [6, 11]: key-value stores (represen-
tatives of which are Redis and Scalaris), document stores
(including MongoDB and CouchDB) and extensible record
stores (including BigTable, HBase and Cassandra). There
exist more than fifty systems, in the various categories, and
each of them can be used by means of a different interface
(different model and different API). Indeed, as it has been
recently pointed out, the lack of a standard is a great con-
cern for any organization interested in adopting any of these
systems [10]: applications are not portable and skills and ex-
pertise acquired on a specific system are not reusable with
another one. Also, most of the interfaces support a lower
level than SQL, with record-at-a-time approaches, which ap-

pear to be a step back with respect to relational systems.

The observations above have motivated us to look for
methods and tools that can alleviate the consequences of
the heterogeneity of the interfaces offered by the various
NoSQL systems and also can enable interoperability between
them together with ease of development (by improving pro-
grammers’ productivity, following one of the original goals
of relational databases [8]). As a first step in this direction,
we present here SOS (Save Our Systems), a programming
interface where non-relational databases can be uniformly
defined, queried and accessed by an application program.

The tool makes use of a description of the interfaces of
non-relational systems by means of a generic and extensible
hierarchical meta-layer, based on principles that are inspired
by those our group has used in the MIDST and MIDST-RT
projects [2, 3, 4]. However, while the focus in our previ-
ous work was on the structure of models, here, as models
are exposed to a limited extent, the meta-layer is concerned
with the methods that can be used to access the systems.
The meta-layer is then instantiated (indeed, implemented)
in the various underlying systems; in this demonstration, we
will use the implementations for a representative for each of
the main classes we mentioned earlier: a key-value store,
Redis, a document store, MongoDB, and an extensible data
store, HBase. Indeed, the implementations are transparent
to the application, so that they can be replaced at any point
in time (and so one NoSQL system can be replaced with
another one), and this could really be important in the tu-
multuous world of Internet applications. We will show a
simple application which involves different systems and can
be developed in a rapid way by knowing only the methods
in our interface and not the details of the various underlying
systems.

The main contribution of this demonstration is in its orig-
inality, as there is no other tool that provides a uniform in-
terface to NoSQL systems. It is also a first step towards
a seamless interoperability between systems in the family.
Indeed, we are currently working at additional components
that would allow code written for a given system to access
other systems: this will be done by writing a layer to trans-
late proprietary code to the SOS interface; then, the tool
proposed here would allow for the execution on other target
systems.

The rest of this paper is organized as follows. In Section 2
we illustrate the principles on which the SOS tool is based.
In Section 3 we illustrate the application we will demon-
strate. Then, we briefly discuss related work (Section 4)
and draw our conclusions (Section 5).

2. THE MAIN CONCEPTS

The architecture of the tool and its interaction with ap-
plications and NoSQL systems are summarized in Figure 1.
In this section we describe the main features.

As we said, NoSQL systems provide different interfaces
to access the data they manage, and we have the goal of
providing some support for reducing the difficulties related
with this heterogeneity. Indeed, despite their diversity, these
systems share some commonalities:' the flexibility in the
data model and the low level of the operation on data.

"We refer here to the features related to how data is modeled
and accessed. There are other common, important features,
namely the attention to scalability and the frequent relax-

Application

l get(query)

Common Interface

l delete(ld)

l put(Object)

Figure 1: Architecture of SOS

More specifically, these systems all provide operations on
objects, which have some form of identifier. Each object has
an internal structure that has some form of components for
each object, with different features in the various systems.

In our tool we currently provide support for three NoSQL
systems: HBase, Redis and MongoDB, as representatives of
the three major categories mentioned in the Introduction.
HBase? is an extensible record store modeled after Google
BigTable [7]. Data are organized in tables where each row
has an arbitrary number of fields (columns) grouped in clus-
ters (column families). It is possible to retrieve rows using
identifiers (single values, yielding one row, or ranges, produc-
ing collections of rows). HBase does not support any notion
of query to retrieve rows on conditions on fields other than
the identifier. Redis® is a key-value store where single val-
ues can be retrieved using their identifier. Redis supports
various data types such as String, Integer, Set, and List and
native operations to manipulate them. Finally, MongoDB*
is a document store that handles collections of objects rep-
resented in BSON® a variant of the JSON® format. Every
document has a unique identifier that is used for indexing
purpose. MongoDB couples a very simple and intuitive data
organization with a rich interface for querying and manipu-
lating data.

It turns out that these three systems (as well as most of the
others in the NoSQL world) support operations that, with
differences in details related to the specific data organization
and the syntactic choices for the languages, provide support
for storing and removing objects and for retrieving objects or
sets of objects. As a consequence, in our search for a unified
approach, we decided to design an interface that offers put,
delete and get methods, the latter referring to both uniquely
identified objects and to sets of them.

In order to handle the representation of objects that are
semistructured, with various degrees of structuredness, SOS

ation of consistency, which are orthogonal to the aspects we
are interested in here, and so we do not consider them.

2http://hbase.apache.org
3http://redis.io
‘http://www.mongodb.org
*http://bsonspec.org
Shttp://www.json.org

adopts an intermediate, common representation for objects,
implemented in the JSON format, which offers a compact
hierarchical organization which is, at the same time, flexi-
ble, as the internal structure of objects can be used or ig-
nored, depending on the capabilities of the underlying sys-
tems. Moreover, JSON documents are easily handled by
most programming languages, and often used as a suitable
format for serializing their native objects.

These ideas could be implemented in various programming
paradigms and environments. As a first effort, we decided
to proceed with Java, given the large set of applications that
use it.

So, we defined a Java interface (named NonRelational-
Handler), which exposes the following methods correspond-
ing to the basic operations illustrated above:

void put (String collection, String ID, Object o)
void delete (String collection, String ID)
Object get (String collection, String ID)
Set<Object> get (Query q)

So, NonRelationalHandler supports put, delete and get
operations based on the objects identifiers, as well as mul-
tiple retrievals by simple conjunctive queries (the second
form of get). These methods handle arbitrary Java objects,
which are then serialized into JSON documents in order to
be processed by the underlying layer. Finally, each request
is codified in terms of native NoSQL DBMS operations, and
the JSON object is given a suitable, structured represen-
tation, specific for the DBMS used. The requests and the
interactions are handled by technology-specific implementa-
tions acting as adapters for the DBMS’ drivers.

We have implementations for this interface in the three
systems we currently support. The classes that directly
implement the interface are the “handlers” for the various
systems, which then delegate to other classes some of the
technical, more elaborate operations.

For example, the following code is the implementation of
the NonRelationalHandler interface for MongoDb. It can
be seen that put links a content to a resource identifier,
indeed creates a new resource. The adapter wraps the con-
version to a technical format (this responsibility is delegated
to objectMapper) which is finally persisted in MongoDB.

public class MongoDBNonRelationalHandler
implements NonRelationalHandler {
public void put(String cName, String ID, Object object) {
DBCollection coll =
db.getCollection(this.getCollection(cName));
ByteArrayOutputStream baos =
new ByteArrayOutputStream();
this.objectMapper.writeValue(baos, object);
ByteArrayInputStream bais =
new ByteArrayInputStream(baos.toByteArray());
this.mongoMapper.persist(coll, ID, bais);

As a second implementation of NonRelationalManger, let
us consider the one for Redis. As for MongoDDb, it contains
the specific mapping of Java objects into Redis manageable
resources. In particular, Redis needs the concept of col-
lection, defining a sort of hierarchy of resources, typical in
resource-style architectures. It can be seen that the hierar-
chy is simply inferred from the ID coming from the uniform
interface.

Follower

Figure 2: The schema for the data in the example

public class RedisNonRelationalHandler
implements NonRelationalHandler {
public void put(String collName, String ID, Object object) {
Jedis jedis = pool.getResource();
try {

// the object is stored in the meta-layer
ByteArrayOQutputStream baos =

new ByteArrayOutputStream();
this.objectMapper.writeValue(baos, object);
DBCollection coll =

db.getCollection(this.getCollection(cName)) ;

ByteArrayInputStream bais =

new ByteArrayInputStream(baos.toByteArray());
this.databaseMapper.persist(

jedis, coll, ID, bais);
baos.close();
bais.close();
} catch(JsonParseException ex) {

ex.printStackTrace();
} finally {
pool.returnResource(jedis);

}

3. THE DEMO APPLICATION

In order to show how the SOS tool can support application
development, let us adopt the perspective of a Web 2.0 de-
velopment team in charge of releasing a new version of Twit-
ter. Transactions are short-lived and involve little amount
of data, so the adoption of NoSQL systems is meaningful.
Also, let us assume that quantitative application needs have
lead the software architect to drive the decision towards the
use of several NoSQL DBMSs, as it turned out that the var-
ious components of the application can benefit each from a
different system.”

The data of interest for the example have a rather sim-
ple structure, shown in Figure 2: we have users, with login
and some personal information, who write posts; every user
“follows” the posts of a set of users and can, in turn, “be
followed” by another set of users. We store users’ data in
MongoDB, posts in Redis and the “follower-followed” rela-
tionships in HBase.

The application can be implemented by means of a small
number of classes, one for users, with a method for register-
ing new ones and for logging in, one for tweets with methods
for sending them, and finally one for the “follower-followed”
relationship, for updating it and for the support for listen-
ing. Each of the classes is implemented by using one or more
database objects, which are instantiated according to the
implementation that is desired for it (MongoDB for users,

"For the sake of space here (and of time in the demo), the
example has to be simple, and so the choice of multiple
systems is probably not justified. However, as the various
systems have different performances and different behavior
in terms of consistency, it is meaningful to have applications
that are not satisfied with just one of them.

Redis for tweets, and HBase for the relationship). More pre-
cisely, the database objects are indeed handled by a support
class that offers them to all the other classes.

As an example, let us see the code for the main method,
sendTweet () for the class that handles tweets. We show
the two database objects of interest, named tweetsDB and
followshipsDB of the NonRelationalHandler with the re-
spective constructors, used for the storage of the tweets and
of the relationships, respectively. Then, the operations that
involve the tweets are specified in a very simple way, in terms
of put and get operations on the “DB” objects.

NonRelationalHandler tweetsDB =
new MongoDbNonRelationalHandler();
NonRelationalHandler followshipsDB =
new HBaseNonRelationalHandler();

public void sendTweet(Tweet tweet) {
// ADD TWEET TO THE SET OF ALL TWEETS
tweetsDB.put ("tweets", tweet.getId(), tweet);
// ADD TWEET TO THE TWEETS SENT BY THE USER
Set<Long> sentTweets =
tweetsDB.get ("sentTweets", tweet.getAuthor());
sentTweets.add (tweet.getId());
tweetsDB.put ("sentTweets", tweet.getAuthor(), sentTweets);
// NOTIFY FOLLOWERS
Set<Long> followers =
followshipsDB.get("followers", tweet.getAuthor());
for(Long followerId : followers) {
Set<Long> unreadTweets =
tweetsDB.get ("unreadTweets", followerId);
unreadTweets.add (tweet.getId());
tweetsDB.put ("unreadTweets", followerId, unreadTweets);
}
}

It is worth noting that the above code refers to the specific
systems only in the initialization of the objects tweetsDB and
followshipsDB. So, it would possible to replace an underly-
ing system with another by simply changing the constructor
for these objects.

In the demo, we will show how an application such as the
one we have just described can be easily implemented from
scratch, given the handlers for the various systems, and we
will also show how immediate is to replace a NoSQL system
with another, given our tool.

4. RELATED WORK

To the best of our knowledge SOS is the first proposal
that aims to provide a solution to handle the heterogeneity
of NoSQL databases. The approach for SOS we describe
in this demo finds its basis in the MIDST and MIDST-RT
tools [2, 3, 4], where we defined a generic metamodel for rep-
resenting and querying a wide set of models for traditional
databases. The SOS interface uses the same principles and
ideas of MIDST metalayer, but with a number of differ-
ences, as we already pointed out in the introduction. The
need for a run-time support for interoperability of heteroge-
neous systems based on model and schema translation was
pointed out by Bernstein and Melnik [5] and proposals in
this direction, again for traditional (relational and object-
oriented) models were formulated by Terwilliger et al. [13]
and by Mork et al. [9]. This is the first such a proposal in
the NoSQL field.

The problem of classifying and finding common principles
for NoSQL databases was described by Cattell [6] where
non-relational systems are characterized in detail. Stone-
braker [10] describes in detail the problems in using NoSQL

databases deriving from the absence of a standard model
and a common query language and interface.

S. CONCLUSIONS

In this paper we introduced a programming interface that
enables homogeneous treatment of non relational schemas.

We provided a meta-layer that allows the creation and
querying of NoSQL databases defined in MongoDB, HBase
and Redis using a common set of simple atomic operation.
Finally we described an example where, the interface we
provide enables the contemporary use of NoSQL database
transparently for the application and for the programmers.

6. REFERENCES

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the
Web: From Relations to Semistructured Data and
XML. Morgan Kauffman, Los Altos, 1999.

[2] P. Atzeni, L. Bellomarini, F. Bugiotti, F. Celli, and
G. Gianforme. A runtime approach to model-generic
translation of schema and data. Inf. Syst.,
37(3):269-287, 2012.

[3] P. Atzeni, L. Bellomarini, F. Bugiotti, and
G. Gianforme. A runtime approach to
model-independent schema and data translation. In
EDBT Conference, ACM, pages 275-286, 2009.

[4] P. Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein,
and G. Gianforme. Model-independent schema
translation. VLDB J., 17(6):1347-1370, 2008.

[5] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD
Conference, pages 1-12. ACM, 2007.

[6] R. Cattell. Scalable SQL and NoSQL data stores.
SIGMOD Record, 39(4):12-27, 2010.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst., 26(2),
2008.

[8] E. Codd. Relational database: A practical foundation
for productivity. CACM, 25(2):109-117, 1982.

[9] P. Mork, P. Bernstein, and S. Melnik. A schema
translator that produces object-to-relational views.
Technical Report MSR-TR-2007-36, Microsoft
Research, 2007. http://research.microsoft.com.

[10] M. Stonebraker. Stonebraker on nosql and enterprises.
Commun. ACM, 54:10-11, August 2011.

[11] M. Stonebraker and R. Cattell. 10 rules for scalable
performance in ’simple operation’ datastores.
Commun. ACM, 54(6):72-80, 2011.

[12] M. Stonebraker, S. Madden, D. J. Abadi,

S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era (it’s time for a complete
rewrite). In VLDB, pages 1150-1160, 2007.

[13] J. F. Terwilliger, S. Melnik, and P. A. Bernstein.
Language-integrated querying of xml data in sql
server. PVLDB, 1(2):1396-1399, 2008.

