
Towards the managment of time in
data-intensive Web sites

Paolo Atzeni and Pierluigi Del Nostro

Dipartimento di Informatica e Automazione — Università Roma Tre
{atzeni,pdn}@dia.uniroma3.it

Abstract. The adoption of a logical model for temporal, data-intensive
Web sites is proposed together with a methodology for the development.
The model allows the definition of page-schemes with temporal aspects
(which could be related to the page as a whole or to individual compo-
nents of it). The design process follows a development that starts with a
traditional E-R scheme; the various steps lead to a temporal E-R scheme,
to a navigation scheme and finally to a T-ADM scheme. A tool associ-
ated with the methodology has been developed: it automatically gener-
ates both the relational database (with the temporal features needed)
supporting the site and the actual Web pages, which can be dynamic
(JSP) or static (plain HTML), or a combination thereof.

1 Introduction

The systematic development of Web sites has attracted the interest of the
database community as soon as it was realized that the Web could be used
as a suitable means for the publication of useful information of interest for com-
munity of users (Atzeni et al. [1], Ceri et al. [2], Fernández et al. [3]). Specific
attention has been devoted to data-intensive sites, where the information of in-
terest has both a somehow regular structure and a possibly significant volume;
here the information can be profitably stored as data in a database and the sites
can be generated (statically or dynamically) by means of suitable expressions
(that is, queries) over them (Merialdo et al. [4]). In this setting, the usefulness of
high-level models for the intensional description of Web sites has been advocated
by various authors, including Atzeni et al [1, 4] and Ceri et al. [2], which both
propose logical models in a sort of traditional database sense and a model-based
development for data intensive Web sites.

When accessing a Web site, users would often get significant benefit from
the availability of time-related information, in various forms: from the history of
data in pages to the date of last update of a page (or the date the content of a
page was last validated), from the access to previous versions of a page to the
navigation over a site at a specific past date (with links coherent with respect
to this date). As common experience tells, various aspects of a Web site often
change over time: (i) the actual content of data (for example, in a University Web
site, the instructor for a course); (ii) the types of data offered (at some point we



could decide to publish not only the instructor, but also the teaching assistants,
TAs, for a course); (iii) the hypertext structure (we could have the instructors in
a list for all courses and the TAs only in separate detail pages, and then change,
in order to have also the TAs in the summary page); (iv) the presentation.
Indeed, most current sites do handle very little time-related information, with
past versions not available and histories difficult to reconstruct, even when there
is past data. Clearly, these issues correspond to cases that occur often, with
similar needs, and that could be properly handled by specific techniques for the
support to time-related features. Therefore, we have here requirements that are
analogous to those that led to the development of techniques for the effective
support to the management of time in databases by means of temporal database
(see Jensen and Snodgrass [5] for a recent survey and Snodgrass [6] for a textbook
discussion).

It is well known that in temporal databases there are various dimensions
along which time can be considered. Beside user-defined time (the semantics
of which is “known only to the user”, and therefore is not explicitly handled),
there are valid time (“the time a fact was true in reality”) and transaction
time (“the time the fact was stored in the database”). In order to highlight the
specific aspects of interest for Web sites, let us concentrate on valid time, even
if transaction time could have some specific, additional facets.

In a Web site, the motivation for valid time is similar to the one in temporal
databases: we are often interested in describing not only snapshots of the world,
but also histories about its facts. However, there is a difference: in temporal
databases the interest is in storing histories and in being able to answer queries
about both snapshots and histories, whereas in Web sites the challenge is on how
histories are offered to site visitors, who browse and do not query. Therefore, this
is a design issue, to be dealt with by referring to the requirements we have for the
site. The natural (and not expensive) redundancy common in Web sites could
even suggest to have a coexistence of snapshots and histories.

This paper is aimed at giving a contribution to the claim that the manage-
ment of time in Web sites can be effectively supported by leveraging on the
experiences made in the database field, and precisely by the combination of the
two areas we have briefly mentioned: temporal databases on the one hand and
model-based development of Web sites on the other. In particular, attention is
devoted to models and design: models in order to have a means to describe tem-
poral features and design methods to support the developer in his/her decisions
on which are the temporal features of interest to the Web site user.

The paper extends the experiences in the Araneus project [1, 4, 7, 8] where
models, methods and a tool for the development of data-intensive Web sites
were developed. Indeed, we propose a logical model for temporal Web sites, a
design methodology for them and a tool to support the process (whose features
have been recently demonstrated and sketched in a short paper, Atzeni and Del
Nostro [9]).

The rest of the paper is organized as follows. Section 2 is devoted to a brief
review of the aspects of the Araneus approach that are needed as a background.



Then, Section 3 illustrates the temporal extensions for the models we use in our
process and Section 4 the methodology with the associated tool, with the help of
an example. Finally, in Section 5 we briefly sketch possible future developments.

2 The Araneus models and methodology

The Araneus approach (Merialdo et al. [4]) focuses on data-intensive Web sites
and proposes a design process (with an associated tool) that leads to a completely
automatic generation of the site extracting data from a database. The design
process is composed of several steps each of which identifies a specific aspect in
the design of a Web site. Models are used to represent the intensional features
of the sites from various points of view:

1. the Entity Relationship (ER) model is used to describe the data of interest
at the conceptual level (then, a translation to a logical model can be per-
formed in a standard way, and is indeed handled in a transparent way by
the associated tool);

2. a “navigational” variant of the ER model (initially called NCM and then
N-ER) is used to describe a conceptual scheme for the site. The main con-
structs in this model are the major nodes, called macroentities, representing
atomic units of information, which often consolidate concepts from the ER
model (one or more entities/relationships), and navigation paths, expressed
as directed relationships;

3. a logical scheme for the site is defined using the Araneus Data Model (ADM),
in terms of page schemes, which represent common features of pages of the
same ”type” with possibly nested attributes, whose values can come from
usual domains (text, numbers, images) or be links to other pages.

The design methodology (sketched in Figure 1, see Atzeni et al. [7]), sup-
ported by a tool called Homer (Merialdo et al. [4]), starts with conceptual data
design, which results in the definition of an ER scheme, and then proceeds with
the specification of the navigation features, macroentities and directed relation-
ships (that is, a N-ER scheme). The third step is the description of the actual
structure of pages (and links) in terms of our logical model, ADM.

Fig. 1. The Araneus design process

Three simple schemes for the Web site of a University department, to be used
in the sequel for comments, are shown in Figures 2, 3, and 4, respectively.



Fig. 2. The example ER schema

Fig. 3. The example N-ER schema

A fourth step is the specification of the presentation aspects, which are not
relevant here. In the end, since all the descriptions are handled by the tool
and the various steps from one model to the other can be seen as algebraic
transformations, the tool is able to generate, in an automatic way, the actual
code for pages, for example in JSP or in plain HTML, with access to a relational
database built in a natural way from the ER scheme.

3 Models for the management of temporal aspects of
Web sites

We believe that there is a need for the representation of temporal aspects at
various levels during the design process, and therefore in each of our models, by
means of features that are coherent with the focus of the phase of the develop-
ment process the model is used in.

We propose a development process that follows the same path as we discussed
in Section 2, with some extensions. and the tool we are implementing supports all
phases as well. We start with brief comments on the models we use for describing
our data, which follow known extensions from the temporal database literature,
and then illustrate the conceptual and logical hypertext models.



Fig. 4. The example ADM schema

3.1 Models for the representation of data

The temporal extension for the conceptual data model refers to standard propos-
als in the literature for temporal E-R models (see Gregersen and Jensen [10] for
a survey). In the data conceptual design phase, temporal features are added to
the ER scheme, by indicating which are the entities, relationships and attributes
for which the temporal evolution is of interest. The temporality can be specified
either for an entity (or a relationship) as a whole or for single attributes; if an
entity is temporal, then it is not allowed (as not needed) to assign the tempo-
rality property to its individual attributes. By specifying an entity as temporal,
the designer indicates interest in maintaining a history about its life-cycle, and
especially about its creation instant and its possible deletion instant, as well as
about changes for the values of all and each its attributes.

The database used to handle the data for our Web sites is relational, as in
the Araneus approach, with temporal features added to it (if using our tool the
temporal features are generated automatically and the developer need not have
any specific competence). If an entity is defined as temporal, when a change is
applied to one or more of its attributes (at the same time), the system stores
the tuple as a whole. If one single attribute is marked as temporal, its history is
maintained independently from the other attributes.



3.2 Temporal aspects of Web sites at a conceptual level

The two models we use to describe the structure of a Web site refer to different
levels: the N-ER model considers concepts whereas ADM refers to the actual
structure of pages. The same disticntion applies to their temporal extensions.

The temporal N-ER model allows the specification of whether versions have
to be managed for the concepts (macroentities and directed relationships) of
interest for the site, and how.

More precisely, it allows the definition of the temporality feature for each of
its concepts (macroentities, direct relationships, and attributes). A concept can
be defined as temporal if its origin in the ER scheme has at least a temporal
component, but not necessarily vice versa. For example, a macroentity can be
defined as temporal if it involves temporal elements from the T-ER model; how-
ever, we could have macroentities that are not defined as temporal even if they
involve temporal elements, for example because the temporality is not relevant
within the macroentity itself (indeed, Web sites often have redundancy, so an at-
tribute or an entity of the ER scheme could contribute to various macroentities,
and, even if temporal, it need not be temporal in all those macroentities).

For each temporal element, a major facet is relevant here: which version(s)
are of interest from the conceptual point of view? Currently, we consider this as
a choice from a set of alternatives, such as (i) the last version with a timestamp;
(ii) versions at a given granularity (to be specified by the designer); (iii) all
versions.

3.3 Temporal aspects of Web sites at a logical level

The logical design of a temporal Web site has the goal of refining the descrip-
tion specified by a temporal N-ER scheme, by introducing all the details needed
at the page level: how concepts are organized in pages and how the version-
ing of temporal elements is actually implemented. The temporal extension of
ADM (hereinafter T-ADM ) includes all the features of ADM (and so allows
for the specification of the actual organization of attributes in pages and the
links between them), and those of the higher level models (the possibility of
distinguishing between temporal and non-temporal page schemes, and for each
page, the distinction between temporal and non-temporal attributes; since the
model is nested, this distinction is allowed at various levels in nesting, with some
technical limitations), and some additional details, on which we concentrate. A
major choice here is the implementation of the versioning requirement specified
at the conceptual level. Out of the three cases (i)-(iii) mentioned at the end of
the previous section, the non-trivial ones are the second and the third, which
offer the same alternatives, as follows:

– A first possibility is that the various versions are included together in the
same page, each annotated with the respective validity interval.

– A second alternative is to separate the “current value” from the previous
versions, correlated by means of links. The current value could be associated



with the date of the last change, whereas the versions could have validity
intervals.

– A completely different organization is the “time-based selective navigation,”
where, for a page, the user selects the instant of interest and sees the corre-
sponding version (and then can navigate over pages as of that date).

Additional features allow for the emphasization of recent changes (on a page or
on pages reachable via a link).

The above features are expressed in T-ADM by means of a set of constructs,
which we now briefly illustrate.

last modified This is a special, predefined attribute used to represent the
date/time (at the granularity of interest) of the last change applied to a temporal
element. This is a rather obvious, and widely used technique, but here we want to
have it as a first class construct offered by the model (and managed automatically
by the support tool) and also we think it should be left to the site designer to
decide which are the pages and/or attributes it should be actually used for, in
order to be properly informative but to avoid overloading.

validity interval This is another standard attribute that can be associated
with any temporal element.

time point selector This is a major feature of the model, as it is the basis
for the time-based selective navigation. It can be associated with pages and with
links within them, in such a way that navigation can proceed with reference to
the same time instant; essentially, in this way the user is offered the site with
the information valid at the selected instant.

target changed This feature is used to highlight a link when the destination
is a page that includes temporal information which has recently (according to a
suitable metric: one day, one week, or whatever the designer chooses) changed.
This property can be used in association with last modified to add the time the
modification has been applied. The target changed feature is illustrated in
Figure 5: a Department page (source) has a list of links to teacher pages (target).
In a teacher page the office hours have been modified. When the user visits the
department page he is informed which teacher pages have been modified (and
when) so he can follows the link to check what is new. The example refers to

Fig. 5. The TARGET CHANGED feature



just one source and one target page, but things may become more interesting
when we consider non-trivial hypertextual structures: this gives the opportunity
to propagate this kind of information through a path that leads to the modified
data (see Figure 6). When a new lecture is introduced, then both the teacher
and the department page are informed (and highlight the change) so the user
can easily know which are the site portions with modified data.

Fig. 6. The TARGET CHANGED feature along a path

revision list This feature allows for the specification that all versions of a
temporal element are shown in the same page as a list of revisions.

link to versions This is a special type of link that has as a target a version
structure (to be illustrated shortly), handling the versions of a temporal ele-
ment called. It is used when the designer chooses to have just the last version in
the main page and the others held in other pages.

version structure These are “patterns” for pages and page schemes, used to
organize the different versions of a temporal element and referred to by the link
to versions attribute. There are various forms for this construct involving one
or more pages:

– simple version structure: a single page presenting all the versions for
the temporal element with timestamps.

Fig. 7. The SIMPLE VERSION STRUCTURE pattern



– list version structure: an “index” page with a list of links labelled with
the validity intervals that point to pages showing the particular versions and
include links back to the index.

Fig. 8. The LIST VERSION STRUCTURE pattern

– chain version structure: this is a list of pages each of which refers to
a specific version. It is possible to scan versions in chronological order, by
means of the “previous” and “next” links available in each page.

Fig. 9. The CHAIN VERSION STRUCTURE pattern

– summary version structure: similar to the previous case but the navi-
gation between versions is not chronological. Each version page has a list of
links that works as an index to all versions.

Fig. 10. The SUMMARY VERSION STRUCTURE pattern



4 The T-Araneus methodology and tool

Let us now exemplify the design process by referring to the example shown in
Section 2 which, despite being small, allows us to describe the main issues in
the methodology. We also sketch how the tool we are implementing supports
the process itself. Rather than showing a complete example, where it would be
heavy to include all the temporal features, we refer to a non-temporal example,
and comment on some of its temporal extensions.

The first step is to add temporal features to the snapshot ER schema. Let us
assume that the requirements specify that we need: (i) to know the state (with
all attribute values) of the entity Project when a change is applied to one or
more attribute values; and (ii) to keep track of the modifications on the office
hour and title attributes for the Teacher entity. The first point means that the
whole Project entity needs to be temporal, whereas for the second point, indeed,
the designer has to set the temporality only for the attributes office hour and
title in the Teacher entity.

In Figure 11 we illustrate the portion of interest of the resulting T-ER schema:
the elements tagged with T are those choosen as temporal.

Fig. 11. The example T-ER schema

With respect to the conceptual design of the navigation, we have already
shown in Section 2 the overall N-ER scheme. Let us concentrate here on the
temporal features: at this point it is possible to choose how to manage versions for
each macroentity and attribute. We have defined the Project entity as temporal
in the T-ER model so the temporal database will handle the modifications but
we don’t want the site to show all versions so we choose here to have only the
last version with a timestamp in the Project macroentity. It will be possible in
the future to change this choice and add the projects version handling in the site
simply changing this property. For the temporal attributes in Teacher we want
all the versions to be managed. In Figure 12 the temporal N-ER scheme is shown
with explicit indication of the version management choices (with the following
codes: AV: all versions; LV: last value; LV TS: last value with timestamp; VG:
versions at a given granularity).

Let us then consider the logical design. As we have specified in Section 2, a
standard ADM scheme can be automatically generated as an algebraic transfor-



Fig. 12. Temporal features in the N-ER model

mation based on the conceptual models (it can then be restructured if needed).
During this automatic generation, for each temporal element in a page scheme,
it is possible to specify how to present versions starting from the choices made in
the N-ER scheme. On the basis of the requirements, we could decide to handle
versions for CoursePage by means of a chain version structure. For the
TeacherPage page scheme we could choose to handle versions in different ways
for the various attributes: all versions in the main page for the title attribute
and just the last version in the main page for the office hour attribute with an
associated simple version structure page presenting all versions.

The T-ADM page scheme for the TeacherPage is illustrated in Figure 13. The
office hour attribute is associated with the last modified information and a
link to version that point to the simple version structure page scheme
presenting all the versions each with a validity interval. The simple attribute
title has instead been transformed into a revision list due to the designer
choice to have all versions in the same page; again, a validity interval is
associated with each version value.

Fig. 13. A T-ADM page scheme

At the end of the design process, the tool can be used to generate the actual
site, which can be static (that is, plain HTML) or dynamic (JSP); actually some
of the features (such as the time point selector) are allowed only in the dynamic
environment.

Currently, there is an implementation of the tool that is complete with respect
to the development process even some of the features of the models are not
available.



5 Future works

In this paper we have focused on one of the aspects of interest for the man-
agement of temporal evolution: the content. Other dimensions are obviously of
interest for real-world, complex Web sites, and we plan to consider them in the
near future. They include: (i) the presentation; (ii) the hypertext structure; (iii)
the database structure. Among them, the most challenging is probably the last
one: as we consider data intensive Web sites, the hypertext structure is obviously
strongly related to the database structure so it could be very important to keep
track of the schema evolution. If you change the ER schema (and, as a conse-
quence, the underlying database schema), for example deleting an entity and
a relationship, it can result in a change in the hypertext structure and/or the
presentation. Essentially, this would be a variation of a maintenance problem,
with the need to keep track of versions.

Another issue we are considering is the relationship between a temporal Web
site and an associated Content Management System (CMS). Indeed, the man-
agement of the temporal database could be delegated to the CMS: updates to
data would generate histories if the involved data is defined as temporal. This
would completely support the management of the temporal data of interest if
updates are allowed only via the CMS. We are working on a prototype for a
“data-intensive” CMS to be used in conjunction with the T-Araneus tool.

References

1. Atzeni, P., Mecca, G., Merialdo, P.: To weave the Web. In: VLDB’97, Proceedings
of 23rd International Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, Morgan Kauffman, Los Altos (1997) 206–215

2. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications. Morgan Kauffman, Los Altos (2002)

3. Fernandez, M., Florescu, D., Levy, A., Suciu, D.: Declarative specification of Web
sites with Strudel. VLDB Journal 9 (2000) 38–55

4. Merialdo, P., Atzeni, P., Mecca, G.: Design and development of data-intensive web
sites: The araneus approach. ACM Trans. Inter. Tech. 3 (2003) 49–92

5. Jensen, C., Snodgrass, R.: Temporal data management. IEEE Transactions on
Knowledge and Data Engineering 11 (1999) 36–44

6. Snodgrass, R.: Developing Time-Oriented Database Applications in SQL. Morgan
Kauffman, Los Altos (1999)

7. Atzeni, P., Merialdo, P., Mecca, G.: Data-intensive web sites: Design and mainte-
nance. World Wide Web 4 (2001) 21–47

8. Merialdo, P., Atzeni, P., Magnante, M., Mecca, G., Pecorone, M.: Homer: a model-
based case tool for data-intensive web sites. In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA, ACM (2000) 586

9. Atzeni, P., Del Nostro, P.: T-Araneus: Management of temporal data-intensive
Web sites. In: Int. Conf. on Extending Database Technology (EDBT 2004), Crete,
Lecture Notes in Computer Science 2992. Springer-Verlag (2004) 862–864

10. Gregersen, H., Jensen, C.: Temporal entity-relationship models—a survey. IEEE
Transactions on Knowledge and Data Engineering 11 (1999) 464–497


