
Model Independent Schema and Data
Translation

(Extended abstract)

Paolo Atzeni(1), Paolo Cappellari(1), Philip A. Bernstein(2)

(1) Università Roma Tre, Italy
{atzeni, cappellari}@dia.uniroma3.it

(2) Microsoft Research, Redmond, WA, USA
philbe@microsoft.com

1 Introduction

Many applications involve the management of heterogeneous data and the need
to translate actual data and their schemas from one framework to another. There
are often different systems used to handle data, following different models, and
there is the need to exchange data from one to another. Even variations of models
are often enough to create difficulties: for example, the object-relational features
of the various DBMSs almost never coincide.

Let us show an application scenario for this problem (very simple for the sake
of space). Consider an OR database with the schema

Employees(EmpNo,Name,Dept:*Departments)
Departments(Name,Address)

Each of the tables is assumed to have a system managed identifier, and the
notation Dept:*Departments specifies that the Dept values are indeed references
to tuples of Departments. A possible instance for the schema is shown in Fig. 1,
where we also show for each tuple the (system managed) identifier. Now, if we
want to translate this database into the relational model, we can follow the well
known technique that replaces explicit references with key values. However, some
of the details of this transformation depend upon the specific features we have in
the source and target model. For example, in the object world, and even in OR
databases, keys (or visible identifiers) are sometimes ignored. Then, if keys have

Employees
EmpNo Name Dept

E#1 134 Smith D#1
E#2 201 Jones D#2
E#3 255 Black D#1
E#4 302 Brown null

Departments
Name Address

D#1 A 5, Pine St
D#2 B 10, Walnut St

Fig. 1. A simple object-relational database



Employees

EmpNo Name Dept

134 Smith A
201 Jones B
255 Black A
302 Brown null

Departments

Name Address

A 5, Pine St
B 10, Walnut St

Fig. 2. A translation into the relational model

been specified on the OR tables, then a reasonable result would be that in Fig.2.
If instead the keys have not been specified in the OR database (and we assume,
as usual, that they are required in the relational model), then the most natural
way to implement the translation involves the use of an additional attribute for
each table, to be used as identifier (however, a visible one, as opposed to the
system managed ones of the OR model).

These problems are often tackled by means of ad-hoc solutions, for example
by writing a program for each specific application, but this is clearly not effective.
Bernstein et al. [3, 4] have recently argued for generic solutions and proposed
a high level approach, called model management, based on a set of operators
to be applied to schemas. A specific operator in the family is ModelGen, which
translates schemas from a source to a target model, exactly as we required above
with respect to the schema level. We use the term ExtendedModelGen to refer
to the extension of it that also translates database instances.

An early approach to ModelGen was MDM [1, 2] a tool to manage hetero-
geneous schemas based on a notion of metamodel with a set of constructs (the
metaconstructs). Each model is defined by its constructs and the metaconstructs
they refer to. The translation of a schema from one model to another is then
defined in terms of translations over the metaconstructs, in such a way that
the same translation is used for a given metaconstruct in all the models where
it appears. The approach is based on Hull and King’s observation [5] that the
constructs used in most known models can be expressed by a limited set of
generic (i.e. model-independent) metaconstructs: lexical, abstract, aggregation,
generalization, function. A major concept in the approach is the supermodel, a
model that has constructs corresponding to all the metaconstructs known to the
system. Thus, each model is a specialization of the supermodel, so a schema in
any model is also a schema in the supermodel, apart from the specific names
used for constructs.

The main limitation of MDM is the fact that it refers only to the schema
level; also the representation of models and transformations is hidden within the
tool’s source code, and so any extension would be very complex, with respect to
the management of instances and also to any customization need.

This paper proposes a framework for the development of an effective im-
plementation of ExtendedModelGen based on a more transparent and flexible
approach. In the rest of this extended abstract we illustrate the main features
of our approach, the structure of our dictionary in Section 2 and the translation



SM Abstract

OID sOID Name

101 1 Employees
102 1 Departments
... ... ...

SM AttributeOfAbstract

OID sOID Name IsKey IsNullable AbsOID Type

201 1 EmpNo T F 101 Integer
202 1 Name F F 101 String
203 1 Name T F 102 String
... ... ... ... ... ... ...

SM RefAttributeOfAbstract

OID sOID Name IsNullable AbsOID AbsToOID

301 1 Dept T 101 102
... ... ... ... ... ...

Fig. 3. An object-relational schema represented in the dictionary

process and rules in Section 3; then in Section 4 we draw our conclusions, and
briefly comment on the experiments we made and the models we used.

2 The dictionary

A major feature of our proposal is the structure of the dictionary used to repre-
sent both schemas and instances, by means of two distinct but highly correlated
parts. The dictionary also has a meta level, which we neglect here for the sake of
space, but can be used as a “core,” to generate the structure of the other levels.

Schemas are described in the dictionary (which has a relational structure)
by means of a table for each metaconstruct, with columns that specify the var-
ious properties of a construct and the other constructs it refers to. Going back
to our example, we would have a number of tables to handle schemas in the
OR model, including those shown in Fig.3. Let us comment on two of them as
representatives:
– SM Abstract describes the object tables (those with system-managed

identifiers); for each of them it keeps the name and two identifiers that are
used in all tables: OID, which identifies the construct, and sOID, to indicate
the schema the construct belong to;

– SM AttributeOfAbstract has information about the attributes of the
two object tables: for each attribute we keep a reference to the abstract it
belongs to (the AbsOID attribute) and two booleans that specify whether it
belongs to the key and whether it allows null values.

The above tables describe schemas in terms of supermodel constructs, be-
cause translations, in order to be reusable, as we will see, refer to the supermodel.
Clearly SM Abstract would also contain tuples referring to other models, for
example the ER model, where entities also correspond to abstracts.

Instances are described with structures similar to those for schemas, with
some differences. A portion of the representation of the instance in Fig.1 is
shown in Fig.4. Let us comment the main points:
– each table has an i-sOID (instance of SchemaOID) attribute, instead of the

sOID attribute we had at the schema level;



SM InstOfAbstract

OID i-sOID AbsOID

1001 1 101
1002 1 101
... ... ...

1005 1 102
... ... ...

SM InstOfAttributeOfAbstract

OID i-sOID AttOID i-AbsOID Value

2001 1 201 1001 134
2002 1 202 1001 Smith
2003 1 201 1002 201
2004 1 202 1002 Jones
... ... ... ... ...

2011 1 203 1005 A
2012 1 204 1005 5, Pine St
2013 1 203 1006 B
... ... ... ... ...

SM InstOfRefAttributeOfAbstract

OID i-sOID RefAttOID i-AbsOID i-AbsToOID

3001 1 301 1001 1005
3002 1 301 1002 1006
... ... ... ... ...

Fig. 4. Representation of an object relational instance

– each instance has a reference to the construct it instantiates; for example,
the first table in the Fig.4 has an AbsOID column;

– “properties” of schema elements (e.g. IsKey, IsNullable) do not appear at the
instance level;

– all identifiers (OID of the construct and the references to other constructs)
that appear at the schema level are transformed into identifiers for instances;
e.g., table SM RefAttributeOfAbstract in Fig.3 includes columns (i)
OID (the identifier for the row), (ii) AbsOID (the identifier of the abstract
to which the attribute belongs), and (iii) AbsToOID (the identifier of the
abstract to which the attributes “points”); in Fig.4 each of them is taken
one level down: (i) each row is still identified by an OID column, but this is the
identifier for the instance; (ii) each value of i-AbsOID indicates the instance
of abstract the attribute is associated with (e.g., 1001 is the identifier for
Smith); (iii) i-AbsToOID indicates the instance of abstract the attribute refers
to;

– if the construct is lexical (that is, has an associated value [5]), then the table
has a Value column; in Fig.4 SM InstanceOfAttributeOfAbstract is
the only lexical construct.

3 The translation process

The translation process from a source schema and instance (in a source model)
to a target schema and instance (in a target model) is based on the supermodel,
so extending the MDM approach (which would do this but only at the schema
level):



1. the source schema and instance are “copied” to the supermodel; this is
straightforward, as each model is subsumed by the supermodel;

2. the actual translation to the target schema and instance is performed within
the supermodel;

3. the target schema and instance are copied into the target model; this is also
a reasonably simple phase, for the same reasons as in 1 above.

Given the complete description of models in the dictionary and their correspon-
dence to the supermodel, “copy transformations” that perform the “copy” tasks
(phases 1 and 3) can be automatically generated.

Therefore, the only transformations that have to be explicitly specified in
our approach are those within the supermodel. They are obtained as composi-
tions of “basic transformations”: for example, the translation we mentioned in
the introduction, from an OR model (with keys) to a relational one, could be
implemented by means of two steps: B1 from the OR model to the binary ER
model (transforming reference attributes into relationships1) and B2 from the
binary ER model to the relational one. If instead we wanted to use variations
of these models, for example an OR model without keys, we could proceed with
a preliminary step before B1 and B2, translating from the OR model without
keys to the OR model with keys (adding “new” key attributes to objects and
generating new values for them). In this way, basic steps are clearly reusable.

The basic transformations and the copy phases we discussed above are each
specified by a set of Datalog rules, which consider the various constructs at hand.
Rules are used both at the schema and at the instance level; let us concentrate
first on the schema level and then on the instance level. Each rule generates
elements of a schema for a given metaconstruct (the one that appears in the
head of the rule), and we might have more rules for the same metaconstruct.

A basic transformation is composed of a set of Datalog rules; for example, the
basic step for translating from the binary ER model to the relational model would
include various rules, generating tables and columns from entities, relationships
and attributes. Let us briefly comment the syntax by referring to one of them,
the rule that generates columns for the attributes of many-to-many relationships:

SM AttributeOfAggregationOfLexicals(
OID:#attribute 4(attOid), sOID:target,
Name:name, IsKey:false, IsNullable:isN,
AggOID:#aggregation 2(aggOid)) ←−
SM AttributeOfBinaryAggr...OfAbs...(

OID:attOid, sOID:source, Name:name,
IsNullable:isN, AggOID:aggOid),

SM BinaryAggregationOfAbstracts(
OID:aggOid, sOID:source,
isFunct1:false, isFunct2:false)

The rule has two literals in the body, the first with the details for the attribute
and the second specifying that the rule is applied only to many-to-many rela-
1 As we will see shortly, rules refer to supermodel constructs, whereas we mention here

model specific ones, for the sake of readability.



tionships (this is done by referring to the two properties isFunct1 and isFunct2,
which specify the cardinality of the relationship). With respect to the head,
there are two points to note. First, there is a constant value, false, for IsKey:
this is because the attribute generated here never belongs to a key, as it orig-
inates from an attribute of a relationship. Second, we use Skolem functors to
generate new identifiers; in general, there are various functors associated with a
given construct, as it may be generated from constructs of various types. Skolem
functions are materialized in the dictionary: there is one table for the Skolem
functions associated with each construct, in order to guarantee the disjointness
of the functions. The tables are a representation of the mapping between con-
structs in the source schemas and those in the target schema, an issue that is
considered very important in model management [3].

Rules for translating instances are derived from those at the schema level, on
the basis of the close correspondence between the two levels in the dictionary,
with only the need for some local refinement for specific issues (which we omit
here for the sake of space). Let us consider a very simple rule in the translation
from the binary ER model to the relational one, the one that generates columns
of tables for attributes entities. At the schema level, is as follows:
SM AttributeOfAggregationOfLexicals

(OID:#attribute 2(attOid), sOID:target,
Name:name, isKey:isK, isNullable:isN,
AggOID:#aggregation 2 (absOid)) ←−

SM AttributeOfAbstract (OID:attOid,
sOID:source, Name:name, isKey:isK,
isNullable:isN, AbsOID:absOid)

The corresponding rule at the instance level is the following:
SM InstanceOfAttributeOfAggr...OfLex...

(OID:#i-Attribute 2(i-AttOid), i-sOID:target,
i-AggOID:#i-Aggregation 2(i-AbsOid),
AttOID:#attribute 2(attOid),
Value:value) ) ←−

SM AttributeOfAbstract (OID:attOid,
sOID:sourceSchema, Name:name, isKey:isK,
isNullable:isN, AbstractOID:absOid),

SM InstanceOfAttributeOfAbstract
(OID:i-AttOid, i-sOID:source,
i-AbsOID:i-AbsOid, AttOID:attOid, Value:value)

Let us note that

– the head is obtained from the head of the schema level rule by applying
transformations that take schema literals “down to instances” (see below);

– the body is composed of two parts: a copy of the body at the schema level
and its transformation down to instances.

The transformations “down to instances” derive from the correspondences in the
dictionary, as follows



1. references to schemas become references to instances: sOIDis replaced by
i-sOID;

2. Skolem functors are replaced by “homologous” functors at the instance level,
by transforming both the function name and the arguments;

3. instances refer to the constructs they instantiate: see the AttOID field;
4. “properties” (e.g., Name and isKey) of schema elements do not appear at the

instance level;
5. identifiers at the schema level become identifiers at the instance level;
6. lexical constructs have a Value attribute.

4 Conclusions

In order to verify the ideas illustrated in this paper, we have implemented a
prototype tool. We have used a metamodel with about twenty different con-
structs, each with a number of properties, so the number of different models
we can define is huge. For our experiments, we have defined a set of significant
models, each in various versions (including the possibility of having or not hav-
ing nested attributes and generalization hierarchies): ER, UML class diagrams,
OR, OO, and relational. At the instance level, we experimented with the models
that handle data, hence OR, OO, and relational (in the nested and flat ver-
sion). We have developed so far about fifteen basic translations, each involving
five to ten Datalog rules, and have obviously generated automatically all copy
rules. The experiments we conducted have confirmed that translations can be
effectively performed with our approach. The tool has been effective, because
of the easiness in the generation of the dictionary and of its visibility and for
the declarativeness of the Datalog rules, independent of the engine that executes
them.

Future work will concern additional experimentation, especially with complex
nested models and the development of features that reason on properties of basic
transformations and of complex translations; the declarative specification of rules
in Datalog will be used as the basis for an automatic generation of descriptions
for basic transformations.

References

1. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. EDBT 1996, 79–95.

2. P. Atzeni and R. Torlone. Mdm: a multiple-data-model tool for the management of
heterogeneous database schemes. SIGMOD 1997, 291–301.

3. P. A. Bernstein. Applying model management to classical meta data problems.
CIDR’03, 209–220.

4. P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision of management of complex
models. SIGMOD Record, 29(4):55–63, 2000.

5. R. Hull and R. King. Semantic database modelling: Survey, applications and re-
search issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.


